
A-R124 674 ASSOCIATIVE DATR RCCESS METHOD (ADAN)(U) AIR FORCE INST 1/3
OF TECH NRIGHT-PATTERSON RFB OH SCHOOL OF ENGINEERING
J R HOLTEN DEC 82 AFIT/GCS/EE/82D-i9

UCASIFIED F/G 9/2 NEhhhhEEomommhhs SE
omhhhhhhmhEmhE
smmhhhhhmhhhhE

smmhhhhhmmhhus

1..

132

'I'IL
low

1. 25 111A. 111.6

'I " o -u- .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARO
S -

1
9 3 °

A

*.L

A

-1-'

'--,- ' '- ,-- - -A-- -_% .% - ' -,_ - --, . ' ** .
Z

,. ,. , % .?_ ' .o . ". " - . . - "--

.V.,

ASSOCIATIVE DATA

ACCESS METHOD

(ADAM)

THESIS

AFIT/GCS/EE/82D-19 James R. Holten III

,." DTIC
":' S E- LE, C:iES 4k Z 1983'

DEPARTMENT OF THE AIR FORCE

*=AIR UNIVERSITY (ATC)

:1 AIR FORCE INSTITUTE OF TECHNOLOGY.
C-3

W. Wright-Patterson Air Force Base, Ohio

Ifnr r',nl't' I ' -'

IC.

. 3 , ', 'c, . .'. .. - , , - . -,7. -, , ,, . , , ,

AFIT/GCS/EE/82D-1 9

4- ASSOCIATIVE DATA

ACCESS METHOD

(ADAM)

THESIS

AFIT/GCS/EE/82D-19 James R. Holten III
Capt USAF

ELECTE
FEB 2 2 1983

Approved for public release; distribution unlimited

.

AFIT/GCS/EE/82D-19

ASSOCIATIVE DATA ACCESS METHOD

(ADAM)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

NTIS GRAUi
DTIC TAB
U,rnrnunced Q
Justification

By
Distribution/

Availnbill ity Codes

Avall and/or
Dist Special

by

James R. Holten III, B.S. Mathematics, cow
B.S. Computer Science

Capt USAF

Graduate Computer Science

December 1982

Approved for Public release; distribution unlimited.

'.. - . .*-*.

Preface

This work was motivated by the widespread need for

rapid multidimensional access to data. Frequent allusions

by numerous instructors at the Air Force Institute of

Technology and in open literature to associative memories,

their high cost, small size, and non-availability, triggered

my interest.

This software approach to associative data access is

far more flexible than hardware approaches can be, and is

far less* expensive to use for specific applications. The

software developed stores data in an efficient, but unique,

manner, and allows rapid multikey access to the data.

It is assumed the reader has a basic knowledge of data

structures and some background in relational databases.

This report presents the basic approach, the computer

program package, and suggestions for further analysis and

research.

Thanks are due to my advisor, Dr. Gary B. Lamont, and

my readers, LtCol James P. Rutledge, Dr. Henry B. Potoczny,

and Dr. Thomas C. Hartrum, for their advice and guidance in

* the research and preparation of this report.

I would especially like to thank my wife and children

for their tolerance, patience, and support during the

writing of this thesis.

James R. Holten III

contents

Preface*

List of Figuresvii
List of Tables ix
Abstract . x

I. Introduction 1

Background 1
Associative Access.*. . .. 1
Past Method.. 3
The Secondary Key Problem. 3
Summary. 6

The Problem 6

Acproach 9

II. Concepts and Requirements 11

Introduction 11

ABasic Concepts 11
*Preliminary Definitions 11

Data Associations 15
Data Access. 17

* ~Summary of Basic Concepts. 19

Mappings 19
Introduction 19
Mapping Algorithms. 19
Data Element Structures 22
Comparison: Compound Versus Complex

Data Structures 24

Associative organization of Data 26
Introduction 26

4Data Associations 26
Multidimensional Data Associations . 29
Data Set Forms 31
Associative Data Models 33

Associative Access to Data 34
Introduction 34
one-dimensional Associative Access . . 35
Multidimensional Associative Access. . 36

Associative Data Access Method (ADAM) . . . 39
Introduction 39

Associative Algorithm Set 39
Associative Map 41
ADAM Summary 42

*Quality Assurance Requirements 42

Summary. 43

Introducon..44

Design Evolution and Tradeoffs 44
Introduction* 44
Full Space Representation 45
Hierarchical Access 46
Multidimensional Binary Trees 47

-Missing Data 49
Retrieval Regions 51
Map Storage 52
Retrieval Forms 53
Summary of Tradeoff Results 58

Introduction 59
Model Interpretation 59
The Structure. . * * * 66

The Manipulation Algorithms. 69
Summary of ADAM 72

The ADAM Program Package 74
Introduction 74
Data Flow Diagrams 74
Program Control Structure 74
Data Structure Diagrams 75
overview 75

Summuary 77

IV. Implementation 80

Introducon..80

Implementation Particulars 80
Introduction 80
Environment 80
Considerations 81
Restrictions 83

Program organization 84
Introduction . . * * * 84

.- * The ADAM Routine Package ; 84
* - The Interactive User Interface

Package 86

iv

Debugger User Interface Package. . . . 87
* Summary of Program Organization. . . . 87

The Use of ADAM. 88
Introduction. 88
Interactive Use of ADAMTEST. 88
Applications Use of the ADAM

Routines 89

Program Modules. 90
Introduction 90
Module Interaction 90
Module Structure 91
Module Code Characteristics. 93

Summary 93

V. Analysis. 95

Introduction 95

Space Requirements 96
Linear Data Sets 96
Multidimensional Linear Ordered

Data Sets. 97
M-way Tree Forms:

4 Fixed Node Sizes 97
M-way Tree Forms:

Variable Node Sizes. 100
Summary of Storage Requirements. o o o103

ADD and DELETE Time Requirements . . . o104
Introduction . .1 i ".04
Linear Unordered DataoSet. o 0 0 o104
Multidimensional Linear

Ordered Data Sets.106
M-way Tree Forms:

Fixed Node Sizes107
M-way Tree Forms:

Variable Node Sizes. 108
Summary of ADD and DELETE Times. . . .112

FIND and RETRIEVE Time Requirements. o o .114
Introduction . o114
Linear Unordered Data Sets115
Linear Ordered Data Sets 115
Multidimensional Linear

Ordered Data Set 116
M-way Tree Forms:

Fixed Node Sizes . o 118
M-way Tree Forms:

Variable Node Sizes120
Summary of FIND and RETRIEVE Times . .123

V

ADAM Performance Optimization125
Space.126
ADD Time 126
DELETE Time 126
FIND and RETRIEVE126
Overall128

Run Time Performance Analysis128

Analysis Summary129

Introductn...131

Data Model Characteristics131

Codes Characteristics132

Theoretical Performance133

Functional Tests134

Summary.134

VII. Conclusions and Recommendations136

Conclusions136

Recommendations137

Bibliography140

Appendix A: Multidimensional Data Structures .143

Appendix B: Data Flow Diagrams151

Appendix C: Data Structure Diagrams172

Appendix D: Source Listings181

Appendix E: Test Runs237

vi

K List of Figures

Figure Pagep -- 1 Hierarchy of Data Elements,
Levels of observation. 12

2 Hierarchy of Algorithm Sets 13

3 Data Elements and Algorithm Sets 15

4 Parallel Complex Data and Algorithm Structures. 24

5 Parallel Compound Data and Algorithm

Structures 25

6 Two Views of Hierarchical Data Elements 32

7 Node Region Versus Search Regions,

2 Dimensions 37

8 Associative Access Via The ADAM Map. 54

9 ADAM Ordered Sequential Set Retrieval 54

10 ADAM Parasitic Retrieval Map 55

11 ADAM Flagged Node Retrieval Map 57

12 ADAM Unit"Box" Regi n.. 60

13 ADAM Region Halving by Levels 62

14 Bit String Vectors for Regions 64

15 ADAM Node Structure 66

16 ADAM Map Hierarchical Structure 67

17 DFD of ADAM Algorithm Set 70

18 ADAMTEST Hierarchy of Control 76

19 AMAPTRAV State Dia ra... 92

20 Quad Tree Node 147

21 K-D TreeLeve..148

22 CARTAM Structure Levels 149

vi i

1 6

, 23 DFD of ADAM Algorithm Set. 153

24 DFD of ACREATE.154

25 DFD of NEWBUFF.155

26 DFD of AADD 156

27 DFD of CRTLSK 157

28 DFD of BITPU 158

29 DFD of MAPSRCH 159

30 DFD of BUILDB 160

31 DFD of RETCELL 161

32 DFD of NODEINS 162

33 DFD of AFIND.163

34 DFD of AREGCOMP164

35 DFD of AMAPTRAV 165

36 DFD of AMOVE.. 166

37 DFD of ARSET. 167

38 DFD of ADELETE 168

39 DFD of ARSELECT 169

40 DFD of REMNODE. 170

41 DFD of ARETREVE 171

42 ADAM Map Data Structure 175

43 ADAM Map Buffer Data Structure. 176

44 Sequential Retrieval Data Structure 177

45 Region Definition Data Structure. 178

46 Level Search Key Data Structure 179

47 Map Position Stack Data Structure 179

48 Trace Stack Data Structure. 180

7! -.. ~.;---.-.--* ~ W -. -

w List of Tables

Table Page

I Examples of Data Types 14

II Data Forms And Applicable Mappings 21

III Space Requirements 103

IV ADD and DELETE Time Requirements 113

V FIND and RETRIEVE Time Requirements 124

VI Performance Ranking of Techniques 125

ix

Abstract

A software solution to the multikey access problem is

* * presented. The result, ADAM, models associative memory

techniques to obtain fast retrieval times and efficient data

storage. A multidimensional tree structure is used. Each

data item key is one dimension, and at each lower level in

the tree each dimension is divided into successively smaller

half-intervals. Unlike m-way trees with fixed sized nodes

and K-D tree levels, each ADAM map level is a linear linked

list. Each node of the ADAM level linear linked list is the

root of a subtree, or is the terminal node of a data item in

the data set. The resulting data structure is, in many

cases, more storage efficient than normal linear storage of

the data items. This is due to the suppression of duplicate

high order bits among the data items. The method allows

retrieval of associative data subsets from the associative

data set much faster than other multikey access techniques.

Analysis of variations on ADAM are suggested, especially for

application to very large (over 100000 data items per data

set) multiuser databases.

x

I Introduction

Background

Associative access is often brandished as a panacea for

many database retrieval problems. Many people have

attempted to implement a good, general purpose method, both

in hardware and software (Ref 6;30). All previous attempts

have fallen short, each being used for its own application,

but none being generally accepted and widely used. This

paper discusses software techniques for associative access

to data, and derives a new technique.

Noting that no technique is good for all applications,

this thesis investigates the performance parameters of

several software techniques. The techniques are compared,

and selection criteria for matching techniques to

applications are suggested. The new software technique is

proposed to fill the gaps in performance left by the others.

Associative Access. Associative access is a vague term

often replaced by the term "content addressable" (Ref 13;

17; 27; 33). "Content addressable" means accessing data by

its value rather than by its location in a data structure.

The idea comes from the outward appearance of the human

memory retrievals (Ref 35). The human mind seems to

associate concepts and thoughts based on their content (Ref

34; 35). A simple event conjures up multitudes of diverse

associations in different people's minds. If someone

mentions how hot it is, someone else may immediately picture

, '€ ." -:-' . -',-'. -.''. .-. -'.- - - " " - "", i _i , :1

the time they had in the heat at the beach in Florida or on

the desert in Arizona. The only relationship between the

triggering statement and the resulting thoughts conjured up

in people's minds is a concept, or perhaps a single word.

Many concept and word associations occur in every mind for

most sensory inputs.

Associative data organization in computers is usually a

model of this behavior in any way that will give similar

outputs for the same inputs (Ref 13; 17; 20; 27; 30).

Associative retrieval of information is the driving force

behind many data base management systems. An extension to

the human memory was needed to hold large quantities of data

and give rapid data retrieval (Ref 9). However, lacking the

ability to implement a fully content addressable memory on a

large enough scale (Ref 30; 33), many approaches have been

tried to create a workable substitute. These substitutes

include database management systems (Ref 8; 21), associative

brain models (Ref 20), and hardware content-scanning

associative processors (Ref 27; 30).

When achieved, rapid associative data access can be

useful in areas such as pattern recognition, graphic scene

analysis (Ref 13), and artificial intelligence (Ref 33).

Within these subject areas, associative access can be

applied to automated speech recognition, weather prediction,

"smart" missile guidance, automated spelling correction,

medical diagnosis, aircraft simulator scene generation, and

• -- -radar target identification. Use in any of these

2

* applications, however, requires many retrievals from large

data bases, and most of the applications have "tight"

retrieval time constraints. Five minutes to analyze a

picture can make a data retrieval program unacceptable in

many applications. The difference between fast and slow

retrieval times can be the access technique used, and to

make retrievals fast enough to satisfy the time constraints,

associative access has been hailed as the "only way to go"

(Ref 17).

Past Methods. Both hardware and software

implementations of associative access to data have been

created. Most of these implementations have simulated

content associative access with combinations of serial and

random access techniques. These implementations include

serial searches of entire data structures (Ref 27), parallel

processors -r I/O devices each doing serial searches of

large data structures (Ref 30), or linked tree searches of

medium to small data structures (Ref 3; 13; 20). The

hardware implementations have all been expensive and their

expansion capability and access times have limited their

usefulness (Ref 27; 30). Most software implementations have

been designed to handle specific problems, and their lack of

generality precludes their usefulness in other applications

(Ref 13; 20).

The Secondary Key Problem. A primary key is any

combination of key data fields which can be used to uniquely

. .. identify each data item in a data set. When a single key

3

* value does not give a unique data item, then the key is

referred to as a secondary key. A primary key, unique for

each data item, can be used to define an ordering of the

data items and used for a binary search. A secondary key

may not be unique, and thus an ordering only allows one

level of binary search, leaving unordered subsets of the

data. Either a new ordering must be created for further

binary searching, or a linear search must be used to select

the proper elements from among those found satisfying the

first search. Knuth (Ref 16:550-567) refers to it as the

secondary key problem, and Bentley (Ref 6:397) calls it the

"multikey searching problem". The difference is that

"multikey" refers to the successive selection on different

keys.

Knuth (Ref 16:550-567) discusses retrieval on secondary

keys and gives some software solutions. These solutions are

inverted files, compound attributes, binary attributes,

superimposed coding, combinatorial hashing, generalized

tries, and balanced filing schemes. Inverted files are

additional orderings for access via multiple key

combinations, hereafter referred to as multiple key linear

orderings. Compound attributes are orderings which depend

on a set of keys, in a specific order of importance. Binary

attributes are merely two-valued attributes, allowing

combinations of attributes to be represented as a single

string of bits. Superimposed coding is similar to binary

attributes except that each attribute is given a multibit

4

coee, and combinations are represented by "or"ing the

multibit codes of all the component attributes together.

Combinatorial hashing consists of hashing all the
attributes, then concatenating the hashed results to a

primary key. Generalized tries (from reTRIEvals) is a

variation on the 'trie' search (ref 16:481) and uses an

m-way tree search. Balanced filing schemes use each

combination of attributes to form an additional inverted

file. Of all these methods, the 'trie' search is the

closest to the candidate data structures considered for

associative access. The candidate structures are the quad

tree, the K-D tree, and the CARTAM structure. These three

software methods are described in Appendix A, and have been

used in associative applications. The quad tree, K-D trees,

and CARTAM, and will be discussed further.

Bentley and Finkel (Ref 5) presented the quad tree, a

common form of the m-way tree. Since its introduction many

others have used it and expanded on the applications of its

associative properties (Ref 11; 12; 28). The quad tree is a

structure for two dimensional data, and as such its

applications have been restricted to such problems as

graphic scene representation.

Bentley later introduced the K-D tree (Ref 3) for more

general use. The K-D tree has the advantage of being able

to represent multidimensional data without changing its

basic data structure elements. However, the K-D tree is not

* .i optimal, and the user's algorithms must be able to

5

"rememberm which dimension is being processed at each node

in the structure.

Petersen (Ref 24) created a multidimensional data

structure for solving a "near-neighbor" problem application,

and called it the Cartesian Access Method, or CARTAM. CARTAM

was used in an associative application, but it was not noted

as an associative access method. The CARTAM package was

created for a specialized application which used Cartesian

measures of distance in a multidimensional space, and thus

was limited to real spatial coordinates. CARTAM also

included a substantial amount of data in each node, making

the nodes large and cumbersome.

Summary. Associative access techniques, though sought

after by many, are still elusive. Both hardware and

software implementations fall short of the performance and

flexibility needed to make the techniques generally useable.

A variation on the CARTAM structure and algorithms, however,

showed promise as a generalized associative access method.

All of the candidate approaches have drawbacks, so the

secondary key access problem must be analyzed in more depth.

The Problem

The world consists of large volumes of information

which living creatures process and store in many diverse

ways (Ref 32; 35). To analyze this information and its many

facets, a model must be used. Once the model is proposed

and accepted, the information, hereafter called data, can be

analyzed only to the extn~nt that the model represents the

6

. - real world, and to the extent that the model can be

analyzed. A model must be derived, presented, and analyzed.

Programmers are having to handle projects which involve
:.

extremely large amounts of data. Selection of data items

from a large data set is easy if there is a single key which

is unique for every data item. A binary search may be

performed. Bentley (Ref 6:397) points out, however, that

multikey retrievals currently give less than satisfactory

results. A quicker way to retrieve data using multiple keys

must be found.

Software implementation avoids the high cost of

developing or purchasing specialized hardware (Ref 17; 27;

30), and can allow the generality needed for widespread

Iacceptance and use of the new associative data structures.
A software implementation also can allow the associative

access technique to be machine portable.

While serial and random access normally return one data

item per retrieval request, associative access is expected

to return a set of data elements for each request.

Implementing this multiple element retrieval reveals new

problems. In what form should the returned set be: a serial

table, a random access array, or an associative data

* structure? How should serial processes and random access

data structures interface with the associative data

structure? What performance measures should be used to

estimate the "goodness" of different associative data

structure implementations: update and retrieval times,

7

memory space usage, or complexity of structure? These

problems require an analysis of the data relationships and

how the relationships are to be used.

The problem is then to implement a generalized

associative data access method which has the following

properties:

-Models real world associations

-Allows efficient secondary key access to large

volumes of data

-Is flexible enough to be implemented on a variety

of large and small computers

-Sets up conventions for retrieval of sets of data

-Insures quality design and code through good

software engineering techniques.

Also criteria will be listed for choosing which techniques

of those analyzed are more efficient for specific

applications.

Scope

The CARTAM structure seems to be a promising

generalized associative data structure and access method.

But there are significant differences in the interpretations

of "associative access" which must be resolved. To make the

access method useful, not only must it be implemented and

evaluated, but the potential users must be shown when the

structure can be applied to a problem, how to apply it, and

then how to make the best use of the application.

8

The object is to educate the user, and to give the user

a new tool for future software development. This paper

presents a possible associative access method, and attempts

to give the user a view of data which will make the approach

easy to apply. The software implementation of an

associative access method gives flexibility far beyond any

obtainable currently in hardware, however, it shares some

logical concepts with the hardware implementations.

Approach

This paper will present several views of artificial

data structures which can be imposed on real world data.

Using these views of data, the paper will show how

associative access methods can be applied to problems, then

an associative data structure and access method will be

presented and analyzed.

Current and past literature is surveyed and the

applicable techniques of analysis are employed. For

* analysis purposes, certain notation and terminology has been

borrowed and applied to the new model of data and for the

description of associativity.

Algorithms to implement an associative access method

using the given data structure will be analyzed and compared

to other access algorithms. The results will be tabulated.

The model presented is a hierarchical view of data in

the real world, and not intended to presume that all data

can be represented in a computer. The model presents a

logical structure for representing data, and then presents

9

-77 - ----

an alternate view of data in terms of types of associations.

Using both views, the data structures presented are shown to

simulate the real world associations of data.

Using the approach and concepts presented in the model,

a candidate associative data structure and access method is

proposed, implemented, and its performance analyzed. This

proposed data structure is compared to other currently

popular data structures which are used for associative

retrieval tasks. Analysis is presented for theoretical

performance with suggestions for analyzing actual

performance.

10

II Concepts and Requirements

Introduction

This chapter develops concepts and terminology

necessary to investigate associativity in data. It then

discusses types of data associations and ways to model the

associations in a computer. The different association

models are developed and their limitations are presented.

Methods for further analysis of their usefulness for solving

real world problems are presented. An associative model is

presented and then ways to access the model are discussed.

Finally specific access method requirements are presented.

Basic Concepts

, Preliminary Definitions. The terminology and concepts

to be used are standardized for the references which follow.

First general terms for referring to data are expressed,

then more specific terms for data associations are

presented.

The structure of real world data can be presented in a

hierarchical or recursive structure. All data can be

represented in this fashion as simply as stating the words

"all data". This can be decomposed at lower levels by such

subdivisions as "all data relevant to the problem at hand"

and "all data not relevant to the problem at hand."

A data set is any collection of data. The components

of the data set are data items. "Data set" and "data item"

11

/ ; .z _ -'- " -" ' .' , ." - ". -- r ' " " " " " " " " " -" " " ".

Single High Level
Data Element Appearance

!4 I j

.. \

Set of Multiple % Low Level1%
Elements j. : Appearance

l : ' * '

I ,
Multiple Sets . - - , Lower Level
Of Multiple ',-. Appearance
Elements

Fig 1. Hierarchy of Data Elements, Levels of Observation

will be used to refer to arbitrary data, while "data.

element" will refer to structured data components.

A data element is a recursively defined unit of data.

It is an arbitrary data set, referenced as a single unit for

purposes of clarity of understanding of the underlying data

structure and its interrelationships. A fundamental data

element is a data element which cannot be further subdivided

(atomic). A fundamental data element could be a measured

value, a Boolean flag, a character, or a label representing

another data element. The makeup of data elements can be

shown, using Backus Naur Form (Ref 14:110), as

<DE>:t: { <CDE> } I <FDE>

<CD>::- <DE> I<DE> <CDE>

where

12

Single Algorithm High Level
Set Appearance

"a I t

* I

Set of multiple Low Level
Algorithms Appearance

Fig 2. Hierarchy of Algorithm Sets

DE is data element,

CDE is collection of data elements, and

FDE is a fundamental data element.

Data can be thought of as having levels of

organization as in Figure 1. Whether a collection of data

is considered a single data element or a collection of data

elements depends completely on the user's level of

observation and abstraction. The data elements at any level

may take on data structures classified as simple, compound,

or complex, corresponding to different data forms found in

the real world and in programming languages as shown in

Table I. The classification is affected by not only the

data structure, but also the associated algorithm set.

An algorithm set is any collection of algorithms which

may be accessed as one single unit. Figure 2 shows how

several algorithm sets may be combined into one higher level

algorithm set. A collection of integer manipulation

41

14 0 01.w
0 r-4 ~ w 41)0

r-4 I 44 4 4.44) 5~4.43
IVH 0> 0 m 00 a V

14 > 00j e-)- 040~-1
0 Vow Rr_ 4 SQi r

r- r. 4 :3--10 to 00 Q 0 M 4)
4)I .W 4-) 4J14 > C3 *- * 4 = U 4J14.
.Q0 . 0 4)4 :j wra) 41) 0

Ca0 k 0H m _V40 to4)c 0 0 id0)41
4) 0 0 04 41 :3C d- 4E-~' -I *r

1% 004 1 C: 0 H 00 0 .0 _H
.00 0 -4 4 e40) ~.0 a

m to -4
0) v 0to
H 00

10 4 44 tH
S .0 :3001I

IV .0 c r.
S 4.) -r4~ *~ 4)-, -

04 H 4. 11 .
54 40 *..14.I0

4)19 0 a0 O C: $4 V
o 0 HHO P- 0 0.0 41

r4 I p-- %.-4: ~ .,1 41
41.) 0 v 04) 41 41 OHF-

0) -to -4. 0H -0t fI
0H WWOAH H H H

0D 0:0 HO-

01 1 $44J
4

-~ 1 1$4X 01.0

Mm 44 p0to 0 "04 0 41
-4 04 0I'00441

E- E4 . 0 4 a r4
0 4>(4) V1go

0 iow'i
0 IV14 I 0)0. 01

c.4 ' I0A to 10$ 0041
0 a)T m.41 W.al4I0
A1 *4 o w 04 4) w4a

U) ~ ~ 1. .0 44)r4: t i
54 14 0o o4)4

4) 4H U ~ 40.0 1
41 0410 0 o1E4 IT .

~$4 0
0i 41 411

-) 0I I_ _

4J >
H= . .1

0 M0.

E4 0

14

User operation
Request

High Level lgorithm Set
Data Elemen

Lower Level
Data'Elements

Fig 3. Data Elements and Algorithm Sets

algorithms which can be accessed via a single standard

"call" can be considered by a user to be a single algorithm

set. A data base manipulation program can do multiple

functions, but is activated by a single call, and therefore

can be considered by a user to be a single algorithm set.

-* Each algorithm set is associated with a specific data

- Ielement structure. Each algorithm implements all the

desired operations on that structure, and is organized as in

Figure 3.

"Algorithm sets" will be used in reference to those

algorithms which operate on data elements. "Associativity"

will be used in reference to data sets and data items, but

must be defined first.

Data Associations. An association is any way that data

items or data sets are related to one another. These can

fall into two main categories, metric associations or

4 - non-metric associations.

15

i...
- '

..- . ;. : - . * •- . .- •.

A metric association is an association which can be

mapped into a real number line, and has the property that

differences between data item association values, or the

association distances, are important to the problem being

solved. A non-metric association is an association where

the data association values can be mapped into numbers, but

the resulting distances are irrelevant. The above two

definitions do not cover all possibilities, but the subsets

of computer data are assumed to fit these definitions.

Associations among data items must be representable in

a convenient form to be easily used for further derivation.

To represent associations, the terms "association value" and

"association vector" are defined with a convenient notation.

An association value, V, is the numerical value into

which an association is mapped for representation. An

association description, S, is a representation of what the

association means to the user. A data item, Do, can then be

considered to be associated with another data item Dl, and

the associative link can be represented by (DO, S, V, D1).

D1 is considered associated to Do.

A collection of data items, Di, for i=l, ..., N can

. each be associated to D via the same association

description S. This will be represented by (DO, S, Vi, Di)

where Di associated to Do via S has the value vi, i=1, ... ,

N.

A pair of data items can have many significant

.. associations, and the number of associations, K, will be

16

assumed to be finite. Then, by assigning an arbitrary order

to the association descriptions, the association description

vector, S=(SI, 82 , .. , S SK) will be formed. Also, the

association vector, V=(Vl, V2, ... , VK) can be formed. The

association vector represents the association values of the

K associations of the data item.

If D is associated with D via each of the association

descriptions, Si, j=l, ..., K, then the full set of

associations can be designated by (Do , S, Vi, Di), i=l, ...,

N. If all the data items Di, i=l, ..., N, are associated to

D via S then an associative data element can be described

by

and D becomes the reference for the data element, and the

Sj are the descriptions for the K associations. DO and S.,

j=l, ..., K, become irrelevant to the storage and retrieval

of the data items Di once the association values, Vij, are

derived. Accessing the D. is now a problem of finding the
1

Vij which are within a search region defined in a K

dimensional vector space.

Data Access. Commonly known as "content addressing",

associative access means "access by value". It is the

process achieved by any of the number of search algorithms

as found in Knuth's volume, The Art of Computer Programming,

4 Vol 3,_ Sorting and Searching (Ref 16). However, most

efficient search algorithms are based upon either data which

17

is accessible via a mapping function, or are based upon data

which is ordered in a single linear sequence, and thus

mappable as a single association. Data which is always

accessed via the same combination of associations has a

one-dimensional association. Data which is accessed by K

-.different combinations of associations has a K-dimensional

association.

Regardless of the number of dimensions, associative

access is expected to return all the data items which

satisfy the search criteria. This makes associative access

a set-oriented access method, as opposed to single

element-oriented sequential access methods. Serial and

random access are examples of single element-oriented

sequential access methods. Sequential access is

characterized by data items accessed one at a time. The

access may be in a serial order or a random order.

Sequential processes access data sequentially.

Computers are generally sequential processors of

storage items. Users of associative access must convert the

accessed set of storage items to a sequential form for use

by the processor. This is often done in hardware by

accessing only one of the data items at a time. Attempts at

parallel processing are usually restricted to a small number

of system processors due to interconnection complications

and costs (Ref 30). Hardware implementations are very

expensive for large applications, are sequential processors

with various storage unit sizes, and are not readily

18

*

available (Ref 30).

Summary of Basic Concepts.. To implement associative

data access, the associations must be modelled by data

elements, and an algorithm set must be created to operate on

the data elements. The algorithm set must be able to

perform the associative access as well as translate an

* associative access data set into a sequential access data

set for processing by a computer. Representing data

association structures as mappings can make the algorithm

set a set of map manipulation algorithms only. Thus, the

associative algorithms and map are independent of all the

characteristics of the data element which are not needed for

representing the associations.

Mappings

Introduction. A mapping is a transformation from some

input domain of values to some output range of values. Any

input from within the domain results in an output within the

range. Mappings can be pure algorithms, as in hash

functions or numeric functions, or they can be predominantly

data structures, as in virtual memory maps, tree structures,

or vectored directories.

Mapping Algorithms. An N-M mapping is an operation

which inputs N fundamental data elements ordered as an

N-tuple, and outputs M fundamental data elements as an

M-tuple. Each position, in the N-tuple and the M-tuple, is

* taken up by a specific type of fundamental data element

which can only take on a specific domain or range of values.

19

The set of N-tuples which includes all possible combinations

of values for the N fundamental data elements is the

N-dimensional domain of the N-dimensional mapping. The

result of the mapping will be an M-tuple of fundamental data

elements, and each of the M fundamental data elements will

have a set of values forming its range. The set of all

possible M-tuples resulting from the mapping of all the

points of the N-dimensional domain is the M-dimensional

range of the N-M mapping. For Pascal record data, the

mapping input may be an index into a table, and the output

may be an address from the corresponding location in that

table; once again mapping into the one dimensional memory

address space of the computer. In the real world, an input

could be a street address and a query as to location of the

address, while the output is a string of instructions on how

to get to that address in an automobile. A mapping can be a

simple 1-1 mapping in a one dimensional space, or it can be

far more complex.

Mapping algorithms in computers take on the

characteristics of being memory-oriented, numeric, or

structured. Some samples of data forms and their mapping

requirements are given in Table II. Memory-oriented mapping

algorithms Rremember" their current location, so the user

must navigate through the range space, always continuing

* .from the last referenced location. Numeric mapping

algorithms use a numeric function to generate numeric range

20.. . . . -

TABLE II

Data Forms and Applicable Mappings

Data Form Computer Mapping Types

Which May Be Used

Numeric Structured Memory

Array Yes No No

Heap Yes Yes Yes

Tree No Yes Some
Variations

Stack No Yes Yes

Sequential
file No No Yes

Random
access
file Yes Yes Yes

values from numeric domain values. Structured m

algorithms use a map, which is a dat4 structure such as a

tree or a linked list, to map input criteria into the range

space. Memory-oriented mappings may not require an input,

and thus may be zero-dimensional mappings. The other

mappings are N-dimensional, with N greater than or equal to

one.

Mapping characteristics will be further discussed as

the data element organization and access methods are

discussed. The data element organization can be classed by

4how the data structure is accessed "easiest". The three

organization access methods most commonly used are serial

21" ..%...................................

access, random access, and associative access.

Data Element Structures. To analyze data elements,

the different structures can be categorized as though each

data element were a map for finding lower level data

elements, and a set of lower level data elements. An

operation on a higher level data element can then be

considered as a set of operations performing the following

- .g functions:
i . Retrieval of or access to the lower level data

elements via the map,

2. Adding and removing lower level data elements,

and

3. Manipulating the contents or values of lower

level data elements.

The first two of these can be considered the alteration and

use of the map, each using the map for finding specific

lower level data elements. The third item is totally

dependent on the lower level data elements and their

associated algorithm sets. Using these operation

requirements as differentiators the data elements can be

categorized as simple, compound, or complex.

*A simple data structure is a structure such that a

single algorithm set exists which can perform every desired

operation on that data structure, and is illustrated as in

Figure 3. The definition is independent of the amount of

-: "information present in the structure. A simple data

22

..structure can be a single fundamental data element; such as

a measurement, an index, a Boolean flag, or a character; or

it can be any structure for which there is a satisfactory

single algorithm set. Table I shows some examples of data

elements which can be considered simple data structures.

For real world data elements, the data structures can be far

more complex than is realizeable in a computer, but still

manipulated by a single algorithm set, such as a visual

scene, analyzed by a single glance from a human eye. Simple

data elements are the building blocks of all other data

structures.

A complex data structure consists of a collection of

data elements which cannot be handled by the repetitive

application of a single algorithm. To create one common

algorithm set, each lower level data element must be handled

individually. Thus, at least two separate algorithm sets

are required to process all the lower level data elements.

Figure 4 shows the parallel hierarchies of algorithm sets

and data elements for a complex data structure. The lower

level data elements may or may not be of similar structures,

and several examples of complex data elements are in Table

I. The characteristic which makes it complex is that

processing the lower level data elements requires multiple

* . algorithm sets.

23

.. .

User Operation> Request

High Level XeHigh Level
Data Element ' Algorithm Set

* .8 I t I I %
• I ! I 1 I

Lower Level - Low Level
Data Elements Algorithm Sets

Complex Data Algorithm Structure
Structure (Multiple Lower Level

Algorithm Sets Needed)

Fig 4. Parallel Complex Data and Algorithm Structures

-4. A compound data structure is a collection of data

elements which may each be manipulated by repeated

applications of a single lower level algorithm set. Figure

5 illustrates the relationships between the hierarchies of

the data element and the algorithm set. Table I gives

several examples of compound data structures. The driving

property here is that the compound data structure is

constructed of a level of individual data elements which are

treated algorithmically as though they are homogeneous.

Comparison: Compound Versus Complex Data Structures.

.Vi- Either compound or complex data structures can be used as

simple data structures once the proper algorithm sets have

been combined to create an algorithm set for the higher

level data structure. The algorithm set for the high level

data structure must include implementations of all the

.1

24

.. L

s ~. User Operation
~j Request

High Level High Level
Data Element / Algorithm Set

Lower Level Low Level

Data ElmnsAlgorithm Set

Compound Data Algorithm Structure
Structure (Single Lower Level

Algorithm Set Needed)

Fig 5. Parallel Compound Data and Algorithm Structures

needed operations on the data structure. These

implementations include lower level data element removal and

insertion, selection of the proper low level data element,

and activation of an algorithm set to perform the necessary

* operations on each data element. To perform the needed

operations on complex and compound data structures requires

algorithms which can be grouped as follows:

1. High level algorithm set,

2. A selection or mapping algorithm for picking

the low level data element on which to operate,

and

3. The necessary low level algorithm sets.

Oppen (Ref 23) uses a similar approach to describe recursive

data structures, but he uses only construction and selection

algorithms in his definition. Here construction algorithms

will be part of the operation algorithm set, and the

25

selection algorithms will be referred to as mapping

algorithms. The mapping algorithms may use a data structure

of pointers, in which case the data structure will be

referred to as the map. If selection involves more than

mapping, then the remainder of the operation will be

considered to be part of the operation algorithm set.

The characteristics of the high level user operations

depend on the map that is used and the actions desired. The

low level operations depend on the actions desired and the

characteristics of the low level data elements. This leaves

the mapping algorithms and the map, which will be discussed

in the next section.

Associative Organization of Data

* Introduction. To represent data associations in a

computer, the associations must be modelled using the

constructions available in the computer. In this section,

associations among data elements are categorized and the

methods of modelling the associations are discussed.

Multiple associations between data elements are also

discussed, and various resulting model structures are

proposed and compared.

Data Associations. Data elements can be associated in

many ways, and these associations can be categorized to aid

in the simulation of the relationships in a computer. The

main categories are logical associations versus physical

* ~-.associations.

A logical association is an association which depends

26

on data content or some implied relationship between data

elements. A real world example is the fact that plants and

animals are both considered "alive", and thus a logical

relationship exists between them.

A physical association is the occurrance of data

elements "near" one another. In computers, using mapping

algorithms, "near" can mean close in terms of some indices,

even though the mapped actual memory locations are far

removed from one another. A real world example of a

physical relationship is a box and its corners, or a tree

and its neighbor, one of each pair is physically related to

the other. Working from logical and physical data

associations further categories can be expressed and used

for a better understanding of the data relationships.

Logical associations include measures of a single type

which are close in value, but also include categories which

are "close" or related ideologicaly in meaning or usage.

Associations of "close" measurement values are simulated in

a computer by values which are "close" in a numeric or

alphabetical ordering sense. Thus content addressability is

often used for simulating data associativity. However

logical associativity also includes the relationships which

are not easily quantized such as the word pair "feather" and

"sneeze". These types of logical relationships must be

modelled in a computer by physical links, since their

relationship is entirely dependent on a logical model of

- some real event. Thus, through content associations by

27

value and physical graph models, logical associations can be

represented in computer memories.

Physical associations can be considered in two

categories, association by proximity, for data elements

which are "near" one another, and association by links, for

those which are not necessarily "near" one another. The

sides of a box are "near" one another, as are consecutive

locations in computer memory, and thus are associated by

proximity. Two cities may be connected by a single highway,

and therefore associated by a link, much as a linked list in

a computer memory. Both of these associations, proximity

and link, can be considered the same if mapping functions

are taken into consideration, because a link is a structured

mapping. However, for the purposes of this paper, in

computer data structures proximity will refer to adjacent

memory locations, or members of a single block of memory,

while link association will refer to association via address

pointers, as in linked lists.

Both logical and physical data associations may be

represented by combinations of proximity, link, and value

associativity. These three forms of associativity are

commonly used in computer algorithms and data structures,

but they are not referenced as forms of associativity.

Serial access data structures use association by

proximity. Association by value is used when the serial

access data elements are ordered by value so that an

* -. efficient tree search can be used to retrieve specific data

28

elements. This results in elements which are "close" in

3value being in physically "close" proximity to one anothev
. in the structure also.

Random access data structures allow the use of direct

pointers to data element locations. This allows indexed

access to any data element, and, through tables, trees,

linked lists, or numerical calculations, allows many data

elements to be "close" even though they are widely separated

in the actual data structure, thus utilizing link

associativity. Linked list and tree data structures (Ref

1; 10; 15; 34) are common examples of link associativity

among data elements in computers utilizing random access.

Tree structures and networks of links (Ref 10; 15) can give

a multidimensional aspect to associations among data points.

Since computers are designed around random access

memories, content associative access is a task of using

actual proximity, value, and link association to retrieve

data by simulating a pure content association from the

random or serial access data. This has been attempted many

times in many ways (Ref 17; 27; 30), and most ways included

a number of exhaustive serial searches.

Multidimension Data ALsociations. Associations among

data elements in a data structure may be categorized by the

number of ways data in a specific structure can be related,

or associated, to the other elements in the same structure.

4A serial array of data elements may be associated with one

another only by proximity, or they may also be ordered and

29

thus also be related by value. The number of associations

5between data elements can be considered the dimensionality
of the associative structure.

Association by proximity in a serial access data

structure gives the data structure a one dimensional

association. In random access data structures, such as

arrays in memory, the association can be considered to be

based on the number of dimensions of the array, ie. a four

dimensional array would have a four dimensional association.

In this way, the dimensionality of the association between

data elements can be used as a measure of complexity of an

associative data structure.

Multidimensional mappings can be used in random access

data structures to map multiple indices into one dimensional

memory address spaces. This allows multidimensional

associations to be represented easily. The multidimensional

mappings allow multidimensional proximity associations to be

simulated through numerical mapping functions. These

multidimensional mappings can also be simulated using tree

or network structures of pointers which result in pointers

into a one dimensional space. The pointer implementations

of multidimensional proximity associations make the

structured mappings more flexible than numerical mappings.

Therefore, to simulate all types of associations, structured

mappings are the most flexible tool available.

45 To use structured mappings for modelling associations,

some association description conventions must be stated.

30

These conventions will describe the associative data sets in

terms parallel to those of data elements, allowing easy

modelling of data sets as data elements.

Data Set Forms. Groups of data, or data sets, having

multidimensional associations may be organized in a numberp of ways. The three data base forms; network, hierarchy, and

relational; are three varied approaches and will be used to

illustrate the different forms of associative data. The

* main characteristic of interest here is whether the

associations are homogeneous or nonhomogeneous.

A homogeneous association of N dimensions is a compound

data structure. There are N different associations, and

every lower level data element is associated to every other

by all N associations. In a relational database relation,

this is illustrated by not allowing any null attributes in

any primary key fields of a tuple.

A nonhomogeneous association of N dimensions is a

complex data structure. There are N different associations,

but at least one lower level data element does not use them

all. More often, only a few of the N associations are used

by all the lower level data elements. This type of

association is prevalent in a network data base, where

different data elements have different forms and thus are

associated by links having different meanings.

A Hierarchical database, if observed in levels, can be

4 considered a hierarchy of data elements as in Figure 6a,

4 31
. .

High Level Data Element

Lower Level Data Elements
I II (One Set, Homogeneous)

It

1Lowest Level Data Elements
(Two Sets,

Each homogeneous)

a. Hierarchy of Compound Data Elements

f~ Z Z 2 z ~ High Level Data Element
(The Whole Structure)

foer Level Data Elements

Non-homogeneous)

b. One Level of Complex Data Elements

Fig 6. Two Views of Hierarchical Data Elements

32

with each level having homogeneous associations. However,

an equally valid view of a hierarchical database is as a set

of low level data elements, together making up a single high

level data element as in Figure 6b, and thus has

nonhomogeneous associations between the low level data

elements. The point of observation, whether it is at a

certain level within the data structure or at some point

outside the data structure, determines whether the

hierarchical database is a hierarchy of compound data

structures, and homogeneous at every level, or a single

level complex data structure, and nonhomogeneous.

Associative Data Models. Many simplifying assumptions

must be applied before the volume of real world data can be

reduced to forms which are meaningful and useful to model in

a computer. Models of data sets with homogeneous

associations are fairly straightforward, and this paper will

limit itself to the analysis and implementation of such a

model. Data sets with nonhomogeneous associations are not

so easy, and will not be considered beyond this section.

For more information on structures which are useful for

modelling nonhomogeneous associations and manipulating those

models see references on graphs (Ref 1:50-52; 10; 16).

* Homogeneous associations can be modelled by low level

data elements which contain N fields, one for each of the N

associations between data elements. The data set then takes

4 on the features of a relation in a relational database (Ref

9). The low level data elements become the tuples, and the

"4 33

N fields representing the associations become the attributes

for that relation.

For a one-dimension association, the model can be as

simple as a one-dimension array of numeric or character

values. For multiple dimensions, the model can be a file of

of logical records or a table of records as in relational

databases. In a sequential access data structure, the data

may be ordered on the values in one of the fields or a

combination of the fields, or it may be unordered. Random

access data structures enable a more complex ordering using

structured mappings to give a multidimension "nearness" to

the data elements.

Data ordering becomes very important when the user

starts evaluating time requirements for accessing lower

level data elements. Ordered data can be accessed by binary

search techniques in order(log(N)) time, while unordered

data can only be accessed in order(N) time (Ref 16).

Associative Access to Data

Introduction. Associative access to data has been seen

as a panacea to mend all data retrieval problems, but

without a fast response with correct and complete results,

associative access is useless. A serial search and compare

of all data in a data set is, technically, an associative

retrieval. There are faster methods in use, and the

proposed Associative Data Access Method will be compared to

these.

The flexibility of an associative access method will be

34

measured by how well it retains its favorable properties of

speed and structure uniformity as the number of dimensions

of associativity is increased.

One-dimensional Associative Access. Many applications

take advantage of one-dimensional associativity. It is

often used for accessing ordered sequential data in a random

access mode. To use one-dimensional associativity is just

to take advantage of the ordering and use a binary search,

whether the search uses a numeric mapping, or a tree

structured mapping, it is still one-dimensional associative

access. The forms are common and can be found in Knuth (Ref

16). Their ease of implementation have given the

one-dimensional associative access methods wide application.

The multiple binary trees in the relational databases

force the user to access one primary key at a time. After

*: selecting all the data meeting the search criteria on that

primary key, the resulting retrieved data set has NO sorted

or structured access available. For extremely large data

sets, which result in large data sets after the first

retrieval, any further selections on the data set will

either be intolerably slow, or some structure must be

generated to recreate the associative access previously

available. Therefore, the secondary selection process is

the downfall of parallel one-dimensional access structures

in multidimensional association applications!

To avoid losing the capability of further rapid

associative access after a first retrieval, the results of a

35

retrieval should be in an associative data structure. Also,

to prevent having to perform numerous selections, one on

each of numerous primary keys, A structure which merges the

binary trees for searching on all primary keys at the same

time would be advantageous. Such a structure would give

rapid multidimensional associative data access.

* -. Multidimensional Associative Access. Mapping each

association into bounded numeric intervals, a

multidimensional association then defines a region similar

to a bounded vector space. Allowing the top level element

in the associative structure to represent the entire region,

then the next level down can split the region into equal

parts. For K associations there will be 2K equal parts, and

each association will be split in half at that level. The

result is a binary tree in K dimensions. To access the

tree, the algorithm must movedown to a level then perform a

search of the smaller regions at that level. The search

becomes one of comparing regions, the search region versus

the small sub-regions defined by each node in the structure,

as illustrated in Figure 7. For each node, the region it

represents is either totally within the search region,

totally outside the search region, or the two regions

overlap. The search algorithm need only look further down

the levels of the structure for those regions which

prtially overlap the search region. Those nodes which are

fully within the search region are retrieved, intact,

36

-* -x x -- xxxxx

---- xx xx xx xx x xx x x
x ~ a xLevel=3x

0

-----------xXXx----

x ~ b Level=4x
X x xx

I ~ ~ -- Ousd XX Ovra xIIsd
Figx 7. Nod Rein Vesu Serc Reios 2 Dimnson

:4 37 xxxx

into the retrieved structure. Those which are fully outside

U the search region are merely ignored.

The multidimensional associative access structure

described has some interesting properties:

1. It can consist of uniform structure elements

which make up the nodes of the associative tree.

2. At each level any one of a number of search

techniques can be applied to select the proper

sub-regions.

3. The structure consists of levels of

homogeneous data elements.

4. The number of levels needed are determined by

the amount of accuracy or number of significant

binary decisions necessary to differentiate

* between the two closest data elements.

5. Only those nodes which represent regions

containing data need be present at any level.

6. Data elements may differ in the value of a

single primary key and still be represented as

distinct from one another.

7. For certain applications, the difference

between two numerically close data points may

considered irrelevant if less than some set

resolution threshhold. Thus, by setting a

resolution threshhold, the number of levels can be

limited and data points closer than the specified

resolution will be mapped to the same point.

38

8. Searches for data can include multiple

disjoint regions and still be performed in a

single retrieval.

9. The entire associative access structure can be

merely a mapping, allowing the data elements to

reside elsewhere, including such media as paper

files, magnetic tapes, books, or multiple floppy

disks.

This versatile associative access method will be called

Associative Data Access Method, or ADAM. ADAM will be

analyzed, based on accepted performance criteria, then

implemented.

Associative Data Access Method (ADAM)

Introduction. For associative access, ADAM will use a

generalized set of associative access calls, defining the

associative access algorithm requirements. The algorithms

are designed to hide the actual implementation particulars

from the user for ease of use. ADAM will also use a

multidimensional associative map data structure to model the

multidimensional associations.

Associative Algorithm Set. An algorithm set is needed

to implement the necessary functions to be performed on the

associative data set. This will be called the associative

algorithm set. To perform associative access, the user must

be able to CREATE the associative data set, ADD data items

to the data set, FIND data items satisfying given search

39

: criteria, and to DELETE uneeded data items. To perform

sequential processing on the items in an associative data

set there must be a RETRIEVE function to convert a found

associative data set into a sequential data set. The

following is a formalized definition of these functions,

using formalisms of Horowitz and Sahni (Ref 10).

structure ADS(item,size,K,index) Associative Data Set

SDS(item) Sequential Data Set

RDEF(index,value ranges) Region Definition

declare CREATE() --- > ads

ADD(ads,item) --- > ads

FIND(ads,index,rdef) ---> ads

DELETE(ads,index) ---> ads

RETRIEVE(ads,index) ---> sds

,.PTY(ads) --- > boolean

for all m in ads; i,j in index; DIV in item; RD. in

rdef; s in sds let

EMPTY(CREATE)::= true

E4PTY(ADD(M,DIV))::= false

DELETE(CREATE)::= CREATE

DELETE(ADD(M, DIV),i)::=

if DIV in RD. then DELETE(M,i)
1

else ADD(DELETE(M,i),DIV)

FIND(CREATE,i,RDi)::= CREATE

V FIND(ADD(M,DIV),i,RD.)::=

if DIV in RD. then

40

.. . .,

ADD(FIND(MiRD),DIV)

else FIND(M,i,RD.)

RETRIEVE(CREATE,i)::=

RETRIEVE(ADD(M,DIV),i)::=

if DIV in RDi then

union((DIV), RETRIEVECM, j))

else RETRIEVE(M,j)

end

end

The functions EMPTY, CREATE, ADD, DELETE, FIND, and

RETRIEVE are the operations a user should expect for any

data set where data is to be stored, later retrieved, and

possibly deleted. The FIND and RETRIEVE functions are often

treated as a single function. Because RETRIEVE is a

translation function from an associative data set to a

sequential data set it is treated here as distinct from

FIND.

This formalized definition not only gives a user's view

of how the operations are used, but also define a set of

functional tests. The functional tests will be the basis

for final software acceptance, the prelude to performance

measurement.

Associative Map. The ADAM associative map is a

hierarchical data structure where each level is a compound

data element. The overall map structure is made up of

..- uniform data elements which form a set of homogeneous data

elements, making the map structure a cofpound data

41

strqcture. Binding the manipulation algorithms for the

homogeneous elements with the access operations defined

above turns the associative map into a simple data element.

The map, with its algorithm set becomes an associative

mapping from the K associations of the data items to the

stored indices which uniquely represent the rest of each

data item. The index may be the entire value, or it may be

a pointer into a separate sequential data structure,

allowing random access to its elements via the retrieved

data set of pointers.

ADAM Summary. ADAM is an associative access mapping

* from K keys to a single data item. The data items should be

accessed on any combination of keys in approximately equal

time.

Associative access via ADAM will be restricted to data

sets containing homogeneous data elements, each with K keys.

It will be a K dimensional access mapping, and can be

applied to databases requiring a fast, yet space-efficient,

.* sollition to the secondary key access problem.

Quality Assurance Requirements

To assure the highest quality software, good software

engineering techniques will be used. The design is to be

top-down, and the code is to be modular, with a high level

of cohesion. All mainline functions of modules will be

performed using passed variables. However, some debug and

*l input/output operations may aie COMMON or global variables.

The software package will include the ADAM algorithm

42

set as its nucleus. However, to allow easy developement and

debugging, and to create a user training program, an

interactive application program package will be implemented.

Each associative data access operation will be interactively

callable, with complete error checking on all inputs. The

user will also be allowed to dump the ADAM data structure to

display or print, as well as turn on and off some function

trace printouts.

Recursive procedure calls will be avoided. Also the

hidden allocation of data storage will be avoided. This is

to allow easy translation of all the program modules to

low-order languages such as FORTRAN or assembly language.

The program package will be implemented in a manner

which allows its use on small computer systems as well as

large. For the purpose of this portability and ease of

stating data descriptions Pascal will be the language used.

Summary

The ADAM hierarchical map structure and associated

algorithms will be implemented in Pascal in a form easily

translatable to lower order languages such as FORTRAN. It

will be designed with portability, modularity, and

maintainability as prime considerations.

An interactive debugging and training package will also

be designed and implemented. This package will include

"HELP" lists of legal commands and meaningful user prompts.

71 The package will also test all user inputs for validity

before attempting to alter the ADAM data structure.

43

AA

III Design

Introduction

*-.- This chapter presents the overall structure and

*.algorithm design of ADAM. Though the design started first.,

* . the implementation followed close behind. Many of the

design decisions were chosen because of difficulties found

in the implementation of the procedures in the PascalIS
language.

The evolutionary sequence of design decisions is

-presented, then the design itself is presented. In the

development and design of ADAM a number of design tradeoffs

were considered. The final product is one version of ADAM,

but other versions are discussed.

Design Evolution and Tradeoffs

Introduction. An ADAM data set is a data element and

its associated algorithm set. To implement it in a computer

requires resolving the computer representable data structure

to use, and determini-g the algorithm operational

-requirements. The design evolution presents successively

more storage-efficient data structures for storing the data

and allowing rapid access to collections of data points
i0 using data point "location" within the space, and the

necessary algorithms to take advantage of the structures.

The evolution includes considerations of a "full sp4ce"

data set with numerical mapping or hash function access,

then hierarchical access. Hierarchical access is refined to

44

multidimensional binary trees, and these are revised to

allow unbalanced trees with missing data regions. Once the

overall associative access structure is described, then ways

to minimize the storage for each node are discussed.

Full Space Representation. N linearly ordered, equally

spaced data points can be mapped to the N indices in (1,N]

using

i = l+(v-m)*s

s = (N-I)/(M-m)

where

i is the data item index,

v is the data item key value,

m is the smallest data item value,

s is the scale factor,

M is the largest data item value, and

N is the number of data items.

Multidimensional ordering of equally spaced data points can

be stored in a multidimension array of locations, and

accessed by numeric index mappings via a hash function.

This is the most rapid way to associatively access fixed

precision multidimension vectors (Ref 25). However it takes

2LK data locations, where L is the bit length of each

association dimension value, and K is the number of

dimensions. A 3-dimensional region with 15 bits of accuracy

" - requires (32768) locations to store all the possible

45

- n-

combinations as an array.

The ADAM is designed assuming that such an association

space will be less than 1% filled! This assumption may

preclude its use in some applications, but ADAM is intended

to fill the gap, and be a practical, space-efficient way to

represent and access data in such a space. Assuming less

than 1% fill would leave an array representation with 99%

wasted space.

Hierarchical Access. Binary tree access to data items

commonly is height balanced around the data points present

to minimize the number of levels required for a search (Ref

10:442). In ADAM the multidimensional binary tree data

structure is region balanced around the normalized ideal

association space. This ideal "box" in K dimensions is then

subdivided into further ideal "boxes" at each successive

lower level. For data of a fixed precision, the region

balanced tree is restricted to the depth required to

represent that precision. ADAM gives, rather than a minimum

number of compares to access a particular point, a fixed

number of levels of compares for any given precision data

set. Height balancing a tree structure over data points

requires adjusting the tree form as points are added or

deleted. Region balancing, however, places the root node

over the entire region, then divides the region up into

equal parts, each part being represented by a region

1 4 balanced subtree. Adding new data points and deleting old

* -ones in a region balanced tree affects only the path from

46

. , .-.. .-'. . . .,- .. .- .- -. .-.. • .. . * . . -. -. . - - - -.. . . • .- ,i - -;

the root to the new or old data point. Thus, points can be

added and deleted without affecting the whole tree. This

structure stability allows region balanced trees to be

accessed by multiple users, and thus, can allow dynamic

associative access maps with multiuser properties. Region

* balancing also lends itself well to multidimensional binary

"" decision processes.

Multidimensional Binary Trees. If, at each level, each

dimension is divided in half, then each dimension undergoes

a binary search in the process of searching from the top

level to each successive lower level. At each of these

levels, there are 2K possible subtrees, each representing

one of the possible combinations of decisions in K

dimensions. There are several ways to access these 2K

possible nodes at a single level. Among these ways are the

CARTAM structure, the K-D trees, and m-way trees.

The overall structure will be referred to as the major

tree structure. Each level may have its own structure,

depending on the method of representation. The structure at

each level will be called the minor structure. The minor

structure differentiates between the methods as follows:

1. CARTAM has a linear linked list as a minor

structure,

2. K-D trees have a binary tree minor structure,

and

3. M-way trees may have any minor structure.

.4.

°-47

-0 . *

CARTAM's minor structure is a linear linked list (Ref

24). Missing subtrees need not have a node in the linked

list. The number of nodes required varies from 1 to 2K , one

for each subtree present. The search at a level is linear,

requiring at most n compares for a retrieval when n

subregions are present.

Associative access via K-D trees uses a binary search

at all levels. Bentley (Ref 3) height balances his K-D

trees, however the structure could be used for region

balanced trees also. The K-D tree uses a K level binary

tree for its minor structure, where the ith level

corresponds to a decision in the ith dimension. This form

requires between K and 2 nodes for its structure at each

level in each subtree, and for a search decision in only the

Kth dimension the entire binary tree at each level must be

traversed.

ADAM uses the CARTAM linear linked list minor

structure. This gives minimum storage utilization for

levels with only one subordinate subtree. This also

simplifies the search algorithm for each level to a simple

linear search, irregardless of which dimensions are used for

the search criteria.

This form of the ADAM tree structure could be almost

represented by the m-way tree of Horowitz and Sahni (Ref

10:496). ADAM, however, allows a node to have a single

child, while m-way trees, including quadtrees (Ref 5; 11;

12) and B-trees (Ref 10:499), require at least 2 children

48

-°

for each node. The nodes of ADAM, rather than dividing the

entire data set in half, add one bit of resolution to each

of the K dimensions at each level for each of the K

associations represented. ADAM does not have a strictly

binary tree structure when viewed in term of the levels, and

for K dimensions and L levels of precision, ADAM retrievals
VK

can require between L and 2KL decisions for retrieval of a

single data item.

Missing Data. Allowing for data points which are

L missing can cause much space to be wasted. As shown above,

array representations are almost useless in many

applications due to the wasted space allowed for missing

data points. The m-way tree representations also have this

problem, but it is not quite so obvious or severe. Using a

variation on the m-way tree definition of Horowitz and

Sahni, the ADAM node form may be shown as follows:

A node, T, is of the form

': ~n,A0, IKI,A I) , (K2 , A 2 1 .. (KnA n

where the Ai, for 0 < i < n are pointers to the subtrees of

T and the Ki, for 1 < i < n are the key values.

To reduce the storage requirements of the nodes some of

the fields can be implicitly stated. If all the fields are

present and the node is a fixed size, then n can be

eliminated. Since ADAM nodes represent ideal regions rather

than stored points, A0 is not needed to point to the stored

* data. The K.Is can be implicit if all the Ai pointers are

49

present, and the relative positions of the pointers

determine their key value, as can be the case in ADAM. The

keys in ADAM are merely the numbers from 0 to 2K_1 for ADAM

nodes at all levels. However, for missing data points, the

pointers are not needed. Often, only one or two of the

pointers may be needed, and the rest of the 2K pointers will

be wasted space. For values of K greater than 2, this

approach wastes significant storage space. ADAM's solution

is to create a linked list of only those pointers which are

needed at each level, each accompanied by its key. The

final forms of a node and a level in ADAM are as follows:

- A node, T, is of the form

(P,K,A)

- A level, L, is of the form

* (PI,KI,AI),(P2 ,K2,A 2), ... , (Pn,KnAn)

- The Ai pointers, for 0 < i < n < 2K-1 , point to

the first node in a subordinate level or to data.

- The Pi pointers, for 0 < i < n < 2K-I, point to

the next node at the same level or to a parent

node.

- for any level, 0 < Ki < Ki+ : 2K-;

1 < i < n < 2K-1 where K is the number of

dimensions.

This form also allows the ADAM nodes to be of uniform

size, eliminating many of the complexities of storage

management for irregular blocks of storage, including

50

complex algorithms, space needed for garbage collection, and

possible storage fragmentation due to unuseable "lfovr"

This same level structure of linked lists is used by CARTAM

(Ref 24).

Retrieval Regions. CARTAM nodes, adapted for use by

ADAM, would require 2 pointers per node, 1 region index per

node, and 2K floating point numbers for the key in each

node. The region index is added for specific ADAM

applications in categorization. The two pointers are needed

for suppression of unused pointers. This leaves the key

representation as the only portion of the node which can be

reduced in size using ADAM's constraints.

The 2K floating point values in the CARTAM key

represent the subregion center value in each of K

dimensions, and the region size in each of the K dimensions.

The region size can be implicitly represented, and the

center value can be shortened substantially. The techniques

are presented next.

-' CARTAM restricts the total representable region to a

finite range of values in each dimension. Also, each level

represents a halving of the higher level. However, CARTAM

* allows levels to be suppressed if there are no branches.

This allows terminal nodes to exist at higher levels

throughout the structure. By not allowing the suppression

of nonbranching levels, the size of the represented region

* can be implicit for the node level. For a node at level L,

* the size in each dimension of the subregion for that node is

51

l/(21) of the entire region's size in that dimension.

The overaii region size, since it is bounded and

finite, can be normalized via a linear mapping to the half

open range [0,1). Once normalized to this range, the Lth

significant bit in the binary representation of each of the

K numbers becomes the only needed key at the Kth level. The

top level keys become the most significant bits of the K

normalized values. Then, the next level's keys are the next

most significant bits, and so on, to the bottom level, where

the keys are composed of the least significant bits of the K

normalized values. This bit-wise decomposition of the

dimension values into level key bit patterns results in the

numbers 0 to 2K 1 as the possible key values at each level.

This reduces the number of bits required for representing

the region centers from K floating point words to K bits.

For K<16 this results in less than one 16-bit integer word

per key.

Map Storage. Often data storage includes not only the

key data fields, but a number of data fields which, though

not used for searches, contain information to be retrieved.

In relational databases these non-search data fields are

those attributes which are not considered keys

(Ref 9:87-88). These will be called non-key fields. Date

(Ref 9:87) defines a primary key as a field which is unique

to every data item in the data set. For a large number of

data items in any order in a file, on paper or disk, a

primary key can be generated. The primary key can be as

52

simple as the position index of the file in the set of

files. ADAM is a mapping from the K keys to such a position

index.

The ADAM data structure becomes a map from the K keys

of the K associations, into the primary key position

indices. To use the ADAM data structure, the user need only

store the K keys and the value of the position index. The

task of retrieving the entire data item then becomes two

smaller tasks, that of associatively retrieving the data

item index via the K association values, and the task of

then retrieving the data item itself via the position index.

Since the position index is a primary key, then the latter

task is trivial, and may even be .xternal to the computer.

ADAM consists only of the associative mapping from the K key

values to the position index.

Retrieval Forms. The sequential processing of a

computer demands that the retrieval of the primary key

indices be in a form sequentially accessible. However,

sequential forms are not amenable to further associative

access. Therefore, ADAM allows the user to FIND associative

retrieval regions within its map as in Figure 8, and also

allows the user to GET the indices of the retrieved data

items in a sequential form as in Figure 9. Associative

regions can be retrieved in either of two forms, parasitic

maps or flagged nodes.

53

5 3 1 4 6i

.44

ADAM Universe ofp Indices OreeDSqetaa
(* indcate rerievd Rtrieed ataSet

Fig . ADAMcOrdeed Aceqsenial Rhetrieva

545
2

Parasitic
Map

Base or
Universe Map

Fig 10. ADAM Parasitic Retrieval Map

A parasitic map is an associative map which has no

terminal data nodes of its own. Instead, it has terminal

references to nodes within a base map. The base map is the

entire retrieval map, while parasitic maps point to subtrees

within the base map. By pointing to only subtrees within

their retrieval region, parasitic maps need duplicate only

the base map structures which contain subtrees both inside

and outside the retrieval region. Subtrees entirely inside

.i'. the retrieval region are pointed to in the base map, and

subtrees entirely outside the retrieval region are ignored.

55

Figure 10 illustrates a parasitic map with its references to

the base map. Parasitic maps have the following advantages:

- They do not have to reside in the same map node

buffer as the base map.

- They may exist in a user's file or memory space

while the base map may be in some other user's or

the system's memory or file space.

- One base map may have any number of parasitic

retrieval maps.

- Set operations of UNION and INTERSECTION can be

performed on multiple parasitic maps of the same

base map.

The other retrieval form is via flagged nodes in the

base map. Any number of regions can be represented this

way, however the regions must be encoded by some method to

allow for naming, region overlap, and representing large

numbers of regions in small data fields within the nodes.

This method of region representation is shown in Figure 11.

Some of the methods considered for encoding the regions are

region index encoding and region flag fields.

56:I

p.

14 *
5 *

6

ADAM universe map w/Region Flags User's Data
Set

*-indicates a retrieved index/data item.
R -indicates subtree is in retrieval region.
R'-indicates subtree is not in the retrieval region.

Fig 11. ADAM Flagged Node Retrieval Map

The region flag field method consists of reserving 2

f lag bits for each region within each node. The bits in a

region flag field are interpreted as follows:

-Bit 1 =1 indicates the node region contains part

of the retrieval region.

-Bit 2 -1 indicates the node region contains part

of the complement of the.-retrieval region.

cJFor each node the retrieval region can then be represented

57

*1-

,- , ' - 1- 1 • ' . .P . -. . . i

as follows:

- Field=l0; Entirely containing the node subregion

- Field=01; Entirely outside the node subregion

- Field=ll; Overlapping the node subregion

- Field=00; Unknown relationship beween the

retrieval region and the node subregion.

The major drawback is that to maintain a small node size,

the number of bits used to represent retrieval regions must

be severly limited.

The alternative is region index encoding, where each

combination of regions used is stored into a table. The

index into the table is stored in the node to represent the

region intersection combination for that node. This can be

effective only when the number of region combinations used

is small.

ADAM uses the region flag field approach, and limits

its number of retrieval regions to 8 regions, requiring a

total of 16 bits per node to represent the region flags.

The parasitic maps were considered and rejected only because

of time constraints in program development.

Summary of Tradeoff Results. ADAM assumes that the

association space is a bounded finite region, and that the

data points fill less than 1% of the space. To take

advantage of the excess space and still give rapid access to

the points of the region, ADAM implements a multidimensional

levelled binary search tree similar to that used in CARTAM.

58

.

p1. "

C-.

ADAM, however, taking advantage of some of the properties of

the association space and the hierarchical structure to

reduce the key sizes, uses much smaller nodes than those

used by CARTAM. The resulting nodes in ADAM can be as small

as 4 fields, each consisting of an integer word or less.

ADAM

Introduction. The Associative Data Access Method

(ADAM) is designed to reflect an associative data mapping

technique. An ADAM data element will consist of an ADAM map

structure and an associated algorithm set for performing the

desired operations on the map structure. This section

presents an interpretation of the model used in the

structure, the structure of the data element, and an

overview of the basic algorithm set needed to build and

access the data element.

Model Interpretation. ADAM is an associative data

element which can serve as the basis for associative

applications. For a real world data element of K

associations to be implemented using an ADAM data element,

the K associations must be mapped into a K-tuple of

numerical values, with each association represented by one

of the entries in the K-tuple. ADAM uses a rational

numerical value in the half open interval [0,1), excluding

the upper limit, for each association. For K associations

the resulting ADAM structure will be a K-dimensional unit

"box" as in Figuze 12 (K=I, 2, and 3).

59

(0)(1

a. 1 Dimensional "Box"

(0,0) (1,0)

b. 2 Dimensional "Box"

(0111)

(0,1,0)(111

(0,0,0) 0(1,0,1

(110,0)

4 c. 3 Dimensional "Box"

Fig 12. ADAM Unit "Box" Regions

60

.

The top level node of the ADAM map structure represents

the entire unit "box". The lower levels represent

progressively smaller subdivisions of the "box" into smaller

"box" regions. Each lower level node represents a

subdivision of the region represented by its parent node.

Each dimension is "halved" at each lower level, such that at

the top the intervals are [0,1) and at the first level the

intervals are [0.0,0.5), and [0.5,1.0). The combinations of

these intervals in each dimension give 2K smaller "box"

regions at each lower level for each higher level "box"

region, or, for a 2-dimensional region, 4 smaller *box*

regions for each higher region, as shown in Figure 13. Each

lower level therefore, gives successively smaller regions,

and thus, successively better resolution for locating points

within the K-dimensional vector space defined by the top

*-: level region. A region at the 30th level measures 1/(230)

on a side. The 30th level region is within an overall space

which is of length 1 on a side. This gives accuracy to

about one in 1 billion, or 30 bits of accuracy.

Using the convention of "0" representing the choice of

the lower half of an interval, and "1" representing the

choice of the upper half of an interval, then the decisions

at a single level, in all K dimensions, can be represented

by a K-tuple of "l"s and "0"s. The region reached by that

combination of decisions can be designated by the K-tuple

which represents the combination of decisions. The K-tuple

can be considered a K-dimensional decision vector,

61
.-.""* 51

* ~~~~~(0,1)_________ (11

(0,0) (1,0)

a. Top Level Region

((05,1

(0,15)(11

(0,0) (5,0d) (1,0)

b. First Level Regions

Fig 13. ADAM Region Halving by Levels

62

representing the decisions required to get to the region the

association vector represents.

Figure 14a shows how the subregions of a single level

of a 2-dimensional space can be represented using the

decision vector notation. Figure 14b demonstrates the

concept extended to three decisions in each dimension. By

concatenating an additional bit for each decision onto the

right end of the ith bit string in the K-tuple for the ith

dimension, K-dimensional rational numerical vectors are
formed. The vector components are bit strings representing

rational numbers. The number of significant bits desired in

the bit strings is the number of levels needed in the map.

The bit patterns of the K bit strings, one for each

dimension, represent the decisions required at each level to

find the region in the ADAM map. These bit strings

correspond to the normalized numerical value for the

association, truncated to the number of bits for the level

of the lowest decision.

The bit string vector is a decision "trace" for each

dimension to any point, or data item, in the structure. The

trace is the string of 0/1 decisions at each level to get to

that point or data item. For 30 levels, the trace is a

vector of K 30-bit numbers which represent the numeric

location of the node within the normalized "box"

representing the association space. This location vector is

truncated at 30 bits, and thus gives 30-bit resolution

63

..

0.5

(0,0) (1,0)05

0 0.5 1

a. First Level Regions

(00,11-) (01,11) (10,11) (11,11)

0.75
(00,10) (01,10) (10,10) (11,10)

0.5

(00,01) (01,01) (10,01) (11,01)

0.25
(00,00) (01,00) (10,00) (11,00)

-1 0 0.25 0.5 0.75 1

b. Second Level Regions

Fig 14. Bit String Vectors for Region Designation

64

rational numbers. Points which differ only in the 31st bit

position will not be discernable in a structure limited to

30 levels, and thus will be mapped to the same location in

the structure. Arbitrary accuracy can be achieved by

setting a specific limit on the number of levels in theI! structure.
This model displays the following properties:

-All data must be "normalized" to the half open

numerical interval [0,1);

- The structure is hierarchical;

- The accuracy of the model is dependent on the

number of levels represented;

-The access to associated data is a "top down"

search process, starting at a root and searching

the entire structure, as opposed to a

"near-neighbor" process, which starts at any given

position and searches the "nearby" points first;

-Each region node can be treated as a uniform

data element, differing only in subregion size and

location in the space;

-The physical interpretation of the structure

can be a levelled K-dimensional binary tree, where

each dimension is divided in half at each level.

65

Sibling/Parent Pointer

Child/Data Pointer

User f Level Search Key

Area Region Index

Fig 15. ADAM Node Structure

The Structure. ADAM uses a hierarchical structure.

The structure consists of levels where any or all but one of

the nodes at a level may be missing, yet all the nodes are

uniform. Each node has two pointers, one to a twin node or

parent node, and the other to a child node or data item. No

unused or null pointers exist in the ADAM structure.

The nodes in an ADAM map are constructed as in

Figure 15, and the user area contains the key field and the

region flag field. The overall hierarchical structure can

be viewed as levels of linked lists, with the last node at a

level pointing back to the parent, allowing traversal either

up or down the tree structure. The data structure is shown

:1 in Figure 16, and is similar to that implemented in CARTAM

(Ref 24). Like CARTAM, if no data points are present in a

region, then the node for that region need not be present in

the structure.

66

• ~~~~ ~7 77 -" I" - ,. -
w

. "" - - -. '. - -
- -

Region Nodes

Top Level

Level #1'4

Level #2

Leaves, or Data Nodes

Fig 16. ADAM Map Hierarchical Structure

Each node represents a K-dimensional "box" region, and

must have associated with it a region size and some

indication of where it is within the association space. The

size of a region is implicitly defined by the node's level

in the ADAM map data structure. The position of the region

in the association space is explicitely given by the "trace

bits" in each node's key and in each key in the nodes at

each higher level.

CARTAM stores both the center value and the "delta", or

size, for each dimension, thus requiring 2K floating point

.1 numbers for each node. ADAM, by normalizing the data, can

67

- 2 * -- - - -.- . * .

assume that a specific level always has a specific size

region associated with it, and thus can rely on just a level

index for the size of a node region. Also by normalizing,

; ADAM can assume that all data at level L under a single node

will differ only in bit number L for each dimension, and

thus the center value is determined by K bits. Using K bits

in each node, representing the "search key" for the node,

requires that every higher level node be present, but other

nodes at the same level need not be present. Using the

10-level example from above, the two data items would

require only 12 nodes to store them.

An alternative to the K-bit string is to store K traces

in each node, however this substantially increases the node

size over the K-bit string decision vector form. To

suppress levels of nodes, the K-trace would have to be in

each node, and a level index would have to be in each node.

Small gains are made.by each form for specific structure

variations, but ADAM uses the K-bit string because of its

small node size. The nodes will be of the form in

Figure 15, with the K-bit string in the user field area.

The ADAM space is a K-dimensional vector space and

includes all the possible values to be taken on by a

K-dimensional vector. Each component of the vector is an

association key value, and is a rational number

representable by L bits and in the real interval (0,1).

68
. . -. . . .

These rational numbers are to be representable in the form

V: b (1/2

F'" - i=l

where bi is an element of the set 0,1). This gives the

binary representation of the rational number as the

concatenation of the biIs, or

b1b2b3 ... bL

This, in turn, allows the trace vector to be expressed as

11 l12 -. b 1L b2lb22 -. b2, ... ,bKlbK2 ... b KL)

and the level search key for the jth level is the jth bit of

each of the dimension traces concatenated into one string,

or

•~~ -. i
° '

bjb2jb3j ... bKj

The Manipulation Algorithms. The ADAM map, to be

useful, must allow the user to build the data access map,

revise it, and selectively retrieve the data items from it.

These operations are shown as ADD, DELETE, and RETRIEVE in

the data flow diagram (DFD) of Figure 17. The DFD also

shows the FIND operation, which is used to identify regions

for later retrieval.

69

.% . --

' i -/ , "Create

AAS Map

ii Add

SDS-S Daeti Data Dat
:-User Item Item

'D-- Regiion Find
SIndex Region ADS

ig1. DDelete
To-ADD a daa p Region User' ' L SDS

"" kyvus oetriev: Reg ion _

' notoADS-- Associative Data Set• :SDS-- Sequential Data Set
ii RD--- Region Definition
.- Size- Max Size of ADS
";. K-.... Number of Dimensions

l'--: IFig 17. DFD of ADAM Algorithm Set

i To ADD a data point to the ADAM map the K association

~key values, of L bits each, are converted to L K-bit level

il search keys. The L level search keys are then used to

search for matches at successive levels. When a match is

F not found at a level, then a branch is built, storing the

remaining keys in the lower level nodes. The new branch, if

70

successfully built, is then inserted into the highesL level

where no match was found.

Both the DELETE and RETRIEVE operations rely on region

indicators to determine which subregions to consider, but

the region indicators are set by the FIND operation. To

DELETE data points, first the region is selected by a FIND

operation. All the data points within the region can then

be DELETEd. The terminal nodes, or leaves, within the

region are returned to free stcrage, and any higher level

nodes which exclusively supported those leaves are also

removed and placed back in free storage. To RETRIEVE data

points, the region is also first selected using a FIND

operation. The subtrees above and within the retrieval

region are then traversed in their entirety. During the

traversal the trace vectors are stored and the association

keys are rebuilt. The retrieval can then return both the

association key and the data item index for each data point

retrieved.

The FIND operation depends on the region descriptions

for its complexity. ADAM is implemented with only simple

multidimensional rectangles. Complex data structures, data

samples, or functions could be used to define retrieval

regions. The FIND operation searches each level, comparing

the subregions with the retrieval region. The comparison

can give one of three results:

- The node region overlaps the retrieval region.

- The two regions are mutually exclusive.

71

- The node region is entirely within the retrieval

region.

If the two regions overlap then the search must continue to

lower levels. If the regions are mutually exclusive then

the node and its associated region can be ignored. If the

node is entirely within the retrieval region, then it can be

flagged as such, and neither its nodes nor subregions need

checked further.

The ADAM operations ADD, DELETE, FIND, and RETRIEVE as

described fit the formal definition for an associative

algorithm set are given in Chapter II, under the subsection

on the associative algorithm set. ADAM customizes their

implementation to handle the ADAM map structure.

Summary of ADAM. ADAM has some interesting properties.

These ean be grouped as structural, algorithmic, and

application properties. The structural properties of ADAM

are as follows:

- ADAM consists of uniform structure elements

which make up the nodes of the associative tree.

- The number of levels needed are determined by

the amount of accuracy, or number of significant

binary decisions necessary to differentiate

between the two closest data elements.

- Only those nodes which represent regions

containing data need be present at any level.

The algorithmic properties are as follows:

72

... --. .,-.,-.t- .-... '-'..!.-.-.--.---.-..-~2

- At each level a linear search is applied to

select the proper sub-regions.

- Searches for data can include multiple disjoint

* - regions and still be performed in a single

retrieval.

The applications properties are as follows:

- Data elements may differ in only the value of a

single primary key and still be represented as

distinct from one another.

- For certain applications the difference between

two numerically close data points may be

considered irrelevant if less than some preset

resolution threshold, and thus by setting a

resolution threshold, the number of levels can be

2 limited, and data points closer than the specified

resolution will be mapped to the same point.

- The entire associative data access structure is

merely a mapping, allowing the data elements to

reside elsewhere, including such media as paper

files, magnetic tapes, books, or multiple floppy

disks.

ADAM is an associative access map, mapping the K keys

of a K dimensional space to a single data item. ADAM allows

retrievals as associative access maps for successive

retrieval operations. It also allows retrievals as

sequentially accessible data sets. Although retrievals

73

could be as parasitic maps, ADAM has been limited to flagged

node retrieval regions to reduce the program development

time. Eight retrieval regions are allowed at one time.

The ADAM Program Package

Introduction. Three major methods of design were used

to coordinate the program and data structures for ADAM.

Data flow diagrams were used to coordinate the module

interactions. A program control structure was used to show

the hierarchy of control among the program modules. Also

Warnier-Orr data diagrams were used. These allowed the

specification of the data structures early in the design

phase. These diagrams are given in Appendix C.

In line with the problem statement of Chapter I and the

0 quality assurance requirements of Chapter II, the program

was designed in modules using a top-down approach. Also, the

program package was implemented for portability and use on

small computers as specified in the requirements and problem

statement.

Data Flow Diagrams. Appendix B contains the data flow

diagrams f• r the ADAM program package. Data flow diagrams

were used to coordinate the module/data interfaces and to

organize the operation sequences. The lowest modules in the

4 diagrams occur only as activities, with no further breakout

for their sub-activities. The diagrams present the overall

picture of data flows and transformations within the main

U modules of the system.

Program Control Structure. The ADAM program package is

74

a collection of procedure modules, many of which are solely

* for the support of the five main procedure modules. To

coordinate the module calls the hierarchy of control diagram

of Figure 18 was created. The higher level modules call the

lower level modules as indicated by the downward pointing

arrows.

Data Structure Diagrams. The structure of each complex

data element is described in the Warnier-Orr data structure

diagrams in Appendix C. The data elements included are the

following:

- User input data item vectors,

- User input region descriptions,

- User supplied map buffer area,

0- Formatted ADAM map buffer, and

- Level search key/ trace bitstring structure.

These are not all the structures used, but they are the

significant ones. All other structures use one of these

patterns.

Overview. The ADAMTEST program package was written

for machine independence, and to run on microcomputer

systems as well as larger systems. The programs were

written modularly for ease of implementation and later

translation to other programming languages as needed.

75

- *-...~ -- - - - - - - - - - - - - - - - - - .---.

Fig 18. AAMTEST HirrhO f oto

HELP AMRI76

S.A -D

The ADAMTEST package is implemented to run on a TRS-80

Model I, with 48K of user's memory, because student

competition for AFIT systems makes their use inconvenient.

The TRS-80 programs can be transferred as needed using an

RS232 serial interface, or a telephone modem. The TRS-80

also made a good example of a common small computer system

on which an ADAM program package may be useful. The

programs were compiled and run using the ALCOR PASCAL

compiler and runtime support package on the TRS-80, using

three 5 1/4 inch floppy disk drives.

The ADAMTEST program package is modular, and includes

an upper level of interactive procedures, allowing the user

to activate the map operations in any desired order. A

DEBUG module was included to allow dumping the map to the

display or printer, and to activate certain trace functions

in the different ADAM procedures.

The nucleus of the package consists of the ADAM map

manipulation algorithms and their necessary support

procedures. The package is written to run on any computer

which has a PASCAL compiler following the language

definition of Jensen and Wirth in PASCAL User's Manual and

Report (Ref 14). Recursive procedure calls were avoided to

allow easy translation of the ADAM procedures to other

computer languages for general application.

Summary

ADAM allows the user to access data via a map. The map

takes K dimensions of associations, or key fields, to a

77

-7-. 7-. 7.

single index. This K dimensional mapping, when applied to

metric data, simulates associative access by using a region

balanced multidimensional binary tree. The major tree

structure of the associative mapping is an m-way tree. Each

-i node of the m-way tree has an internal structure called the

minor structure. For ADAM the minor structure is a linear

linked list, requiring a linear search at each level of the

major tree structure. Data is retrieved as subtree

structures, and a retrieval subtree can be translated to a

sequentially accessible data structure.

The ADAM map requires the user to normalize all data to

the half open interval [0,1) before storing it. The

operations available are ADD, DELETE, FIND, and RETRIEVE.

0 FIND returns retrieval maps, and RETRIEVE translates the

retrieval map into a sequential form.

The map form gives the user a single index for each

data item in the retrieval set. The actual data items do

not need to be in the computer for ADAM to speed access to

them. Indexed paper files, storage bins, or computer disk

file records could be used as the final data storage to be

accessed via the ADAM map.

Parasitic maps can enhance the usefulness of ADAM maps

in a multiuser environment. The overhead storage for each

parasitic map can be totally within the user's address space

and disk file space, making it easier to keep accounts of

user space and time requirements, and their usage of the

* .. ; data set. The current implementation, due to development

78

~. %- -, -

time constraints, does not implement parasitic maps, but

instead uses flagged nodes to mark retrieval regions.

The ADAM program package is implemented within an

interactive control package called ADAMTEST. The ADAMTEST

package allows the user to interactively activate each of

the ADAM operations, and, using a DEBUG module, to inspect

the map directory, map contents, and certain traced

variables during the ADAM operations.

The five basic ADAM procedures are designed to allow an

associative data type. The procedures perform all the

necessary operations to allow the user to utilize the data

type. The ADAM library allows the user to access many

associative maps. Each map contains, in its directory, the

needed information to manipulate the map, such as number of

dimensions, number of levels, and size of storage buffer.

79

IV Implementation

Introduction

This chapter discusses the implementation of the ADAM

procedures. The language and machine selected are

justified, along with reasoning for algorithm portability.

Finally the use of modularity is discussed, including module

interaction, structure, and internal code characteristics.

The organization of the program package is presented,

including comments on the application of the ADAM algorithm

set. The use of the interactive program package ADAMTEST is

also discussed, as well as the use of the ADAM routine

package alone. Good software engineering techniques are the

* driving force behind many of the implementation decisions.

* . These were used throughout to satisfy the quality assurance

requirements of Chapter II.

Implementation Particulars

Introduction. ADAMTEST was implemented on a single

small computer, but intended to be generally useable on any

large or small computer. It also was implemented in a

single language, but intended to be translated to others

easily by any programmer with moderate experience in the

target language. Language constructs not easilly translated

from Pascal to other languages were avoided. These

decisions are software engineering techniques, and consider

possible future uses of the program packag' (Ref 26).

Environment. The ADAMTEST program and ADAM routine

." 80

package were implemented in Pascal using a Model I TRS-80

C*P with 48K of user memory. The compiler and linkeditor used

was ALCOR Pascal, by ALCOR systems of Garland, Texas. The

programs were run under the LDOS operating system, for the

TRS-80, from Logical Systems Inc. of Mequon, Wisconsin.

Pascal was used because it uses strongly typed data

structures and, by not using GOTO's, enforces rigidly

structured code. Also, it is available on most large and

small computers, using the Jensen and Wirth definition (Ref

14). FORTRAN was considered for its universality, but no

structured version is available for the TRS-80, and it does

not have the data structuring of Pascal. Other languages

considered were ADA, not available; C, not universal enough;

e COBOL, not available; Z80 assembly, not universal enough;

and BASIC, not structured or universal. Pascal also allows

easy translation to and from structured English, and is thus

easily translated to other languages.

Considerations. Once the algorithms are defined in

Pascal, the conversion to other languages are easy. Certain

capabilities of Pascal, however, are not easy to implement

in other languages. These are recursive procedure calls,

NEW and DISPOSE free storage management, and pointer

variables. FORTRAN, COBOL, and BASIC have no universally

defined recursive procedure calls. Free storage management

is also not found in FORTRAN, COBOL, or BASIC. Both of the

concepts as well as pointer variables, may be implemented at

specific installations, but they are not part of the ANSI

81

........................., ... A--.

standard which is the universal subset of the languages

implemented at most installations.

Recursive procedure calls were avoided by implementing

-, the state machine in AMAPTRAV and by using an explicit

position stack to move through the map structure. Position
and data stacks were used in the procedures AADD, ADELETE,

AFIND, ARETRIEVE, and AMAPTRAV.

Free storage management was the next complication.

Pascal accesses storage as needed from the "left over"

memory using the NEW procedure. In some implementations,

Pascal also allows the storage to be freed again using the

procedure DISPOSE. Languages such as COBOL and FORTRAN

don't allow this management of undeclared storage in 'left

overm memory space. To insure complete control nver the

memory space used, the map buffer is explicitely declared in

the calling routine, then the free storage management is

initialized by a call to ACREATE. Having explicitely

declared map storage also allows storing the entire map to

disk by serially indexing through the buffer locations,

allowing easy saves and restores of intact associative data

maps.

Using a declared array of nodes for free storage,

permits a node location to be referenced by an integer

index. This eliminates the requirement for pointer

variables which point to absolute memory locations in

* undeclared memory space. Languages such as FORTRAN, COBOL,

and BASIC can implement the array storage and index

82

-S->.

integers, thus the buffer and index convention is better for

translation to these languages.

Restrictions. The ADAM program library is restricted

by the ADAMTEST application in both size and use. Through

ADAMTEST the user can only interact with ADAM via the

standard input, standard output, and the PRFILE list output.

The size limitations make the ADAMTEST program package too

restricted to apply. It is intended only for manipulating

the ADAM map and debugging the ADAM routines.

The ADAMTEST package was implemented to allow

interactive use for debugging the ADAM routine package, a

software engineering technique for simplifying the testing

process. The map buffer was restricted, for the ADAMTEST

application, to MAXNODES=50 map nodes, which allows about 10

data items for a 6 level map structure. For widespread

application the constant MAXNODES must be set to a value

large enough to contain the desired data items. See Chapter

V, Space Requirements, for an estimation procedure for ADAM

map space requirement.

The number of bits is limited to 16 as the constant

MAXBIT, and the number of regions to 8 as the constant

MAXREG. These are set for the maximum number of bits that

- can be contained in a 16 bit integer, and ca' be adjusted as

the integer size changes on other machines.

MAXDIM is fixed at 10. This gives a maximum linear

-- search of up to 210 =1024 compares at each level. Larger

values may be unreasonable, and are discussed further in

83* *"4

Chapter V.

6 Program Organization

Introduction. The ADAM implementation is three major

functional packages under the control of the ADAMTOP, as

shown in Figure 18 of Chapter III. These functional

packages are the ADAM routine package, the interactive user

interface package, and the debugger user interface package.

With minor modifications to remove debugger functions, the

ADAM routines can be used without the others to support user

applications.

The ADAM Routine Package. The ADAM routine package,

implements the associative algorithm set. The routine

package is in four libraries, ALIBI, ALIB2, ALIB3, and

AUTILl. These libraries are listed seperately in Appendix

D.

ALIBI contains the ACREATE and AADD procedures for

creating an empty ADAM map and adding data items to the map.

AADD contains the procedure BUILDB, which builds a single

tree branch, a subtree with only one path. BUILDB is only

used by AADD. ACREATE and AADD also refrence procedures in

AUTILl to perform operations common to ALIB2 and ALIB3.

They also reference the variables and procedures which are

used for debugging only.

ALIB2 contains the AFIND, ADELETE, and ARETRIEVE

procedures for finding a defined region, deleting a found

4region, or retrieving a found region to a sequential

retrieval form. REMNODE, a procedure only referenced by

84

D-R124 674 ASSOCIATIVE DATA ACCESS METHOD CADAN)CU) AIR FORCE INST 2/7
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
J R HOLTEN DEC 82 RFIT/GCS/EE/82D-i9

UNCLASSIFIED F/G 9/2 N

smhEmohEE i

.17.

Lim0

iii~ M -ilI- =

.141ROCCFY RSOWION EST HAR

NATIONA BUREA OFSANAD.16-

ADELETE, is within ADELETE, while AREGCOMP and ARSET are

only used and therefore are defined within AFIND. The

procedures in ALIB2 reference the procedures in ALIB3 and

AUTILl to perform common operations. This library also has

references to debugger variables and interactive output

routines.

The procedures in ALIB3 are ARSELECT, which selects the

proper region bits from the region flag field in a node, and

AMAPTRAV which traverses an ADAM map and returns status

flags which indicate the type of node currently being

visited. Another procedure, AMOVE, is in ALIB3, but it is

only used by AMAPTRAV. AMOVE performs the actual position

index adjustments necessary to move through an ADAM map.

ARSELECT references the common routine BITPU in AUTILl.

* - ALIB3 does not contain any references to the debug or output

routines, but does reference the global print file PRFILE.

The library AUTILl implements a number of the common

operations required by the other modules in the ADAM program

1. -package. The procedures in AUTILl are grouped by operations

which are performed as follows:

-Free node manipulation; GETCELL, NEWBUFF, and

RETCELL;

-Bit manipulation; BITPU and CRTLSK; and

-Map manipulation utilities; NODEINS and MAPSRCH.

Only CRTLSK calls BITPU and references the debugger

variables and output procedures, otherwise all of these

85 ,

procedures are "bottom level", calling no other procedures.

The ADAM routine package can be used as a stand alone

library to be linked to a user application program, but for

this project it was manipulated by the interactive control

routines in the interactive user interface package.

The Interactive User Interface Package. To create,

build, and use an ADAM map with enough flexibility to

quickly debug the ADAM procedures, a high level set of

control routines were used. ADAMTOP is the top level

library of the entire program package. Its structure is

shown in Figure 18 of Chapter III. The program name is

ADAMTEST, and it contains the high level procedures

ADAMCONTROL, INITIALIZE, and HELP.

0INITIALIZE is called once '., initialize global

variables which contain needed constants. These are MASK,

an array of bit masks; PRFLAG, the print/display routing

flag; BITFLG, for enabling bit array trace printouts; and

VECFLG, for enabling integer vector trace printouts. Once

these variables are initialized ADAMTEST passes control to

ADAMCONTROL which remains in execution until the command

"STOP" is input in response to the "ADAM COMMAND-0 prompt.

The legal commands are in Appendix D under the ADAMTOP

library listing of the HELP procedure.

The ADAMCONTROL procedure calls several procedures from

the library AINTER1 to perform interactive input and output

of specific types of data elements.

The only ADAMCONTROL command other than "STOP" which

86

-7-7

does not activate an ADAM map manipulation routine is "DEBO.

"DEB" activates the debugger user interface package.

Debugger User Interface Package. To interactively

inspect the ADAM map after each operation and selectively

trace certain variables during some operations, the debugger

was implemented. Once activated, the debugger continues in

control until "STOP" is given in response to the "DEBUG

* .COMMAND=" prompt. The debugger resides in the library

ADEBUG. The package consists of the main routine ADEBUG and

its support procedures, PRTNODE, DUMPDAT, OUTDIR, and HELP.

The command "DIR" allows the user to dump the current

map directory, and "DUMP" allows the user to dump the map

buffer contents. The directory is dumped by a call to

OUTDIR, while the map buffer is dumped by a call to DUMPDAT.

DUMPDAT repeatedly calls PRTNODE to print each node in the

interval of node indices the user selects.

The other commands of ADEBUG are given in Appendix D ,

in library ADEBUG, in the procedure HELP.

Summary of Program Organization. The procedures in the

ADAM routine package are designed to stand independent of

the interactive control package, but have had some debug

functions inserted into them. To use them independently the

debug functions must be removed.

Using the ADAM routine package, interactively or

otherwise is the next consideration.

87

The Use of ADAM

Introduction. The ADAM routine package may be used

interactively via the ADAMTEST program, with the full

* debugger capability, or it may be used seperately as a

procedure library for supporting applications programs. To

use it seperately, however, the debugger functions inserted

in each of the ADAM routines must be removed.

Interactive Use of ADAMTEST. The ADAMTEST package is

fully interactive. All user inputs have prompts, and there

is a "HELP" command to get the list of commands printed out.

For commands requiring additional information the user is

prompted further. All inputs are checked for validity,

although the checks are for range only on numeric inputs.

Alphabetic inputs, when numerics are expected, can give

results which may be implementation dependent.

Initially, printouts of retrieved data are routed to

OUTPUT, or the display file. By activating the debugger

using "DEB", giving the debugger command "LIST", and then

"STOP", to return from the debugger, all further retrieval

outputs will go to the print file PRFILE. The output can be

returned to the display using the debugger command "DISP".

While in the debugger the trace commands "BITS" and

"VECS" toggle trace flags, reversing their status each time

the command is used. "BITSN activates the bit array trace

printouts, while "VECS" activates the integer vector trace

printouts.

" . "DIR" and "DUMP" debugger commands give the user a view

88

... A

of the current status of the map. "DUMP" prompts the user

to input an interval of map buffer indices, allowing the

user to inspect portions of the map buffer selectively, or

all at one time. These both output their data to the

current retrieval output device.

The user may wish to apply the ADAM routine package

without the problems of interactive data entry. This is

also possible.

Applications Use of the ADAM Routines. By linking

LIB1, LIB2, LIB3, and AUTILl object libraries to a user

package which has external references to ACREATE, AADD,

AFIND, ADELETE, and ARETRIEVE the user can access the

algorithm set directly.

The proper global data types must be declared in the

user's calling procedures and passed in the ADAM procedure

calls. These data types include ADAMMAP, PFILE, DIVEC,

REGDEF, and SEQDS, as found in the declarations in the

library ADAMTOP in Appendix D.

All references to the debug variables, interactive I/O

routines, and global variables also must be removed from the

ADAM routines. These include references to the variables

PRFILE, PRFLAG, BITFLG, VECFLG, and MASK.

To speed up the ADAM routines, the procedure BITPU in

the AUTILl library should be implemented in a language which

allows rapid bit retrieval. Rewriting BITPU can eliminate

the need for the bit masks in the array MASK.

A view of the module interactions is necessary to allow

89

the user to modify the routines as needed for use with

applications programs.

Program Modules

Introduction. A useful tool, the hierarchy of control

diagram, Figure 18 in Chapter III, was created for showing

the module control hierarchy. Using it, the interaction

between modules can be graphically presented. The hierarchy

of control for the entire ADAMTEST program is presented.

The types of module structure are then discussed. Other

useful characteristics of the module source code is then

discussed.

Module Interaction. The hierarchy of control diagram

shown in Figure 18 shows the pattern of procedure calls.

ADAMTEST is the main program, calling INITIALIZE and

ADAMCONTROL. From there control passes downward from those

which have no further procedure calls.

This graphic representation illustrates that there are

no recursive procedure calls. Programming languages such a

FORTRAN and COBOL do not allow recursive procedure calls,

thus, to ease translation into such languages, recursive

procedure calls were avoided.

Although Figure 18 illustrates the hierarchy of

procedure calls, this is not the only way the modules

interact. Module coupling must be considered in more depth.

Almost all the modules have only "data" coupling, where

all communications are through passed arguments. These

exceptions are the print file, PRFILE; the debugger flags,

90

S,- .. rr r . ..

BITFLG and VECFLG; the print flag PRFLAGI and the bit mask

array MASK. These are all treated as "external" coupling,

where the routines share a COMMON data item.

Module Structure. The good Software engineering

techniques, required for quality assurance by Chapter II,

dictated the size and cohesion of the modules (Ref 26). The

body of each of the modules was kept below 100 lines of

code, and thus is two pages or less in the source listing.

Being short modules, the cohesion can be easily observed.

In most cases the module cohesion is functional, however the

exceptions are AMAPTRAV and AMOVE.

AMAPTRAV has sequential cohesion. It is activated to

perform one of a set of operations on a single data

e structure, which is the higher, informational cohesion. To

do the operation it performs a sequence of operations. It

implements a state machine to perform the operations. Given

the program is in a specific state, which state it goes to

next is dictated by its input. The state machine is

illustrated in Figure 19. The state and the input also

determine the output in RESULT.

91

i - ,' . -,-,--','.-.',-.."-. .".."-.. " ."-

Variable Meaning . Values
CUROP State Variable (Down, Across, Up, Stop)
STATUS Input (Attop, Empty, Atbot,

* .* ESULTTerm, Endlev)
REUT Output (Top, Newnode, Leaf)

Empty, Atbot/ Top

others/ewnoded

Tem La

Acros 19. rs AMARAVStae Machin

4nlv -

92

AMOVE has strict informational cohesion. It implements

the map move operations UP, DOWN, and ACROSS, and performs

one of these each time it is called.

The modules each have other characteristics which aid

in understanding and maintaining the code.

Module Code Characteristics. The modules were written

to be easily debugged and maintained. Transportability to

other computer systems was also a consideration. To achieve

these goals all Pascal code was restricted to the statements

found in Jensen and Wirth's PASCAL User's Manual and Report

(Ref 14), and the source code was frequently clarified with

comments for the reader.

One module, BITPU in the AUTILl library, is very

inefficient in Pascal. Pascal does not contain commands to

readily convert integers to bit patterns or bit patterns to

integers. Using arithmetic operations is the only

relatively non-machine dependent method of implementing the

bit packing an unpacking needed. For specific applications

this procedure should be implemented in the machine code for

the computer used. BITPU is called for every node compare

- made by the FIND, DELETE, and RETRIEVE operations.

Summary

Implemented on a Model I TRS-80 personal computer in

Pascal, the ADAM package is designed to be portable. The

few machine dependent particulars are discussed, and the

code is written to be easily translated to other programming

languages.

93

ADAM's modularity gives the program package

understandability, readability, and maintainability. With

only a couple of exceptions, the ADAM modules have

functional cohesion. The exceptions are well documented in

the code.

Good software engineering, for quality assurance,

required a user-friendly human interface. The interactive

ADAMTEST package contains tests wherever possible to assure

the user cannot easily get faulty inputs into the program

system. The abundant, strategically placed input tests,

available "HELP" listings, and meaningful prompts make

ADAMTEST an interactive aid to learning the use of ADAM

maps.

ADAM does contain some implementation dependent

" restrictions, however these are dependent on a maximum

• 'integer size of 16 bits. If the maximum integer size is

smaller, the constants must be readjusted. However, if the

maximum integer size is larger, they need not be changed.

94I

V Analysis

Introduction

Some estimate of ADAM performance characteristics will

be derived in this chapter. ADAM will be compared to other

methods of data storage, mapping, and retrieval to determine

the tradeoffs between methods. The ADAM map will be

analyzed for its space requirements, and the ADD, DELETE,

FIND, and RETRIEVAL operations for their time complexity.

The structures to be compared for the above characteristics

are

1. Linear unordered data sets, the benchmark;

2. Linear ordered data sets, the optimum
1-dimensional access structure, allowing
simple binary searches on a single ordering;

3. Multiple dimension linear ordered data sets, a
commonly used procedure for multikey access,
and obtained by combining multiple attributes
for a single unique key;

4. M-way tree forms in general with a comparison

of

- Fixed node sizes,

- Binary trees in each node, the K-D tree,

- Linear linked lists in each node, CARTAM
and ADAM.

Some variables used in the analysis of the various

95

access techniques are as follows:

- N number of data items in the data set

- K number of dimensions or associations shared
by the data items in the data set

- L number of levels in the m-way tree major
structure

- P number of bits of precision for the
representations of the dimensions or
associations

- s size of one storage unit, in bits

- R =(K/e)(K+1/2), the base of Stirling's bounds
on K!, where e=2.71828.. (see CRC Standard
Mathematical Tables, 14th Ed, 1965, page
433).

First the space requirements of each technique are

considered.

Space Requirements

The space requirements of the different methods for

storing data for associative access are analyzed for

comparison, with a summary in Table III at the end of this

section.

Linear Data Sets. Linear data sets need store only the

K keys and the data item "value" in a sequential array in a

random access form. Assuming each key to be P bits in

length, and the data item "value" to be Sv in length, then

the total size, ST of a data set of N data items is

ST = (KP+Sv)N (V-l)

and if S and Sv is a single storage unit of s bits, then

96

S = (KP+s)N (V-2)

bits. This is on the order of KPN, or OKPN).

Multidimensional Linear Ordered Data Sets. Data sets

with multidimensional linear orderings must have orderings

for every combination of the K keys to be comparable to K-D

trees, CARTAM, or ADAM. This gives K! orderings, which

require at least K!-l pointers for each data item. For

homogeneity it is simpler to consider K! pointers, each of

length S bits. Also, for each data item, the K keys of
p

length P and the data item "value" of length Sv are also

stored. These are stored for each of N data items, giving

the total space requirement as

ST = (KISp +KP +Sv)N (V-3)

If SP, SK and SV each one storage unit, this gives

ST = (KP +KIs +s)N (V-4)

storage units. Using Stirling's bounds on K!, this is

O(RN).

M-way Tree Forms: Fixed Node Sizes. M-way trees with

fixed node sizes include Quadtrees (Ref 5), which have K=2

keys, and B-trees (Ref 10:499), which can have any number of

keys. Generally, the space requirements of these forms are

optimized by point balancing the trees, but here region

balanced trees are also considered, since they are similar

. .,:. to the ADAM map structure. Each node has 2K pointers to

represent K dimensional data and the key information to

97

*° • . ° - *--. - - - - . -- -. -.. , L

.'S

select the proper pointers, forcing the node size to be

.N 2K Sp +KP +Sv V-5)

For the point balanced m-way tree, N nodes are required,

giving a space requirement of

ST = N(2K Sp + KP + Sv) (V-6)

which is 0(2 KN + NKP).

If the m-way tree is region-balanced, the number of

levels is fixed at some value L. The number of nodes

required is found by finding how many are needed to

represent all the data points. The number of nodes at level

i is given by

ni = (2 - (V-7)

where the root node is level i=l. Therefore, the number of

levels, L, which may be required is given by the integer

value of i which satisfies

n i > N > ni (V-8)

or

(2KIL-1_1 > N > (2 K)L -i (V-9)

Solving for L yields

log(N+l) -Klog2 < L < log(N+l) -Klog2 +1

(V-10)

An estimate for L can be obtained by letting the base be 2,

98

e.

log(~l)-1 < L < log(N+l) (-i

The number of nodes required for L levels is given by

L

NL (2 9 K) e (V-12)

(2K)L~l

(K1) (V-13)

and, therefore, the space required is given by

ST = 2K(S +KP) (2 K)L) (V-14)
T P V(2K~1)

*Assuming that S P and S V are each one storage unit, then the

space requirement is given by

S" N - (2K +P)+) (--i

T.(2 K 1)
- N (2s +KP +s) (V-15)

(2K- 1)

The distribution of the N data points about the region

dictate the number of nodes, and thus the total space

required. If uniformly dispersed over the region, the

maximum space required by N points is

N KST (-1) +KP +s) (V-17)
12K-)

i . (Ks KP +) (-99

, .4

-' integer words for the "spread" portions of the tree which

have all the branching to separate the nodes. This uses up

1 of the L levels, where L1 is the integer found from

1 -1 < log N < L1 (V-18)

The rest of the levels, L-L1 , have N nodes at each level,

giving

S2 = (L-L1)N(2 Ks +KP +s) (V-19)

storage units. The maximum number of storage units required

for N data points in a region balanced tree is at most

S = +S (V-20)

TMAX 12
_ N +(L-LI)N(2Ks + KP +s) (V-21)

(2KI)

integer words, where L is the largest integer such that L1 1

-1 > log N , and K is the number of keys.

The m-way tree with fixed node size storage requirement

is then O(LN2K + LNKP), worst case.

M-way Tree Forms: Variable Node Sizes. The m-way

trees with variable node sizes include region balanced K-D

trees, CARTAM, and ADAM. Each of these forms uses a

collection of smaller nodes to emulate a single variable

sized m-way tree node. For the m-way tree node size

calculations, there are some simplifications. The three

implementations each form major tree structure m-way nodes

of varying sizes.

100

For the region balanced K-D trees, the m-way node size

varies from a minimum of

SlaIN KSKN (V-22)

where K is the number of keys and SKN is the size of a K-D

tree node, to

SKMAX - (2K-1)SKN (V-23)

When there is only one pointer out of the m-way node, the

node size is SKMIN because all K key decision levels must be

represented in the node. When the node is full, SKMAX is

the resulting m-way node size. SKN is two pointers, and the

key may be explicit in the node's location, thus

S KN = 2Sp (V-24)

However, the key precision is P = L. Therefore, the K-D

tree space requirements become

- N (2K-I)SKN +(L-L)NKSKN

(V-25)

. NSKN(I +K(L-LI)) (V-26)

" 2NSp(1 +K(L-L1)) (V-27)

This space requirement is linear in N, however, the maximum

value is on the order of the product Of N, L, and K, or

O(KNL).

For CARTAM, each m-way tree node consists of a linear

101

I* .- *o

*.°

linked list of between 1 and 2K CARTAM nodes. The CARTAK

nodes contain 2 pointers, K center values, and K delta

values. The center values and delta values contain the key

a precision, and thus use P storage units each, and the

pointers use S p space. This gives the CARTAM node size as

SCN = 2Sp +2KP. When no branches exist at a level, the

nodes can be suppressed, giving the CARTAM space

requirements as

ST K N -- K (V-28)

N K 2(Sp +KP) (V-29)!.i i1 1/2)

This is O(NPK) space requirement.

0ADAM packs the keys in each node to reduce the K keys

to one K-bit field, giving the ADAM node size as

S = 2S +K (V-30)

ADAM cannot suppress non-branching levels as CARTAM does.
mK

The m-way tree nodes format consists of from 1 to 2K ADAM

nodes, but the node size is reduced to

S -N 2K (L-L)NS (V-31)THAX 2 K 1 SAN+(1l)NAN

= N +(L-log(N+)lN) (2Sp+K)

1-(1/2
(V-32)

- (3s+K)(N +(L-log(N+I))N)..': "i' ?/ 1- (1/2K)

(V-33)

102

. ..

* . .

Table III

* Space Requirements

K = Number of Dimensions (Associations)
L = Number of Levels in Data Structure
N = Number of Data Items in the Data Set
.P = Number of Bits of Precision
R = Stirling's Base for the K! Bound

Data Set Type Maximum Space Requirement

Linear Data Set OKPN)

Multidimensional
Linear Ordered O(RN)

M-way Tree *
-Fixed Node Size 0(2KN+NKP)

-Variable Node Size **
K-D Tree O(LKN)

CARTAM O(KNP)
•* ***

ADAM O(NK(I+L+logN))

* This is a fixed value, not just a maximum.
• * For these, P = L.
• ** For L-1 < logN < L this is O(NK).

storage units. This is O(NK+LNK-NKlogN). For L A log N

this is O(NK), but L = P is neccessary to get the desired

key precision, giving O(NK(1+P-logN)).

Summary of Storage Requirements. The space

requirements of the given methods are summarized in Table

III. The storage complexity of ADAM can be less than those

of all the other techniques if the desired precision is

approximately log base 2K of N.

103

ADD and DELETE Time Requirements

Introduction. To analyze the time required for ADD and

"-. DELETE operations, the time to locate the data item position

" .must be considered. Where necessary, the single data item

find time is derived first, then the ADD and DELETE times

are calculated.

Linear Unordered Data Set. A linear search must be

performed to find a data item. However, no search is needed

to ADD a data item. It can be ADDed to the bottom of the

set in KP+s stores of one storage unit each, where store

time is TS, giving

TA = (KP+S)Ts (V-34)

which is O(KP) time.

To DELETE a data item, it must first be found via a

linear search. The maximum search time is given by

TfMAX = KPNTC (V-35)

where T is the compare time for one storage unit. All the
C

keys of all N data items must be compared.

The DELETE time is then the time to find the data item

plus the time to store a null for each key, or

TD = Tf+KPTS (V-36)

4 O

104

m ,, ,

which gives the maximum DELETE time as

TDMAX = KPNTc+KPTS (V-37)

T is O(KPN).

Linear Ordered Data Set. Both ADD and DELETE first

require a search to find where the value lies in the data

set. Using the key sequence which is used for the ordering,

a binary search finds the correct location in a maximum time

of

TfM X = KPTclogN (V-38)

and a minimum of TfMIN = KPTC time.

Letting i be the location at which the data item is to

be inserted, then the ADD time is given by

TA = Tf+TM+(KP+s)TS (V-39)

where TM is the move time required to move all the data

items from the ith to the Nth down one position to make room

to insert the new data item. TM varies from the time to

move N data items, to the time to move none, or

0 < TM< (KP+s)NTS (V-40)

Thus, the ADD time is

T AMAX KPTclogN+(KP+s)NTs+(KP+s)TS (V-41)

= KPTclogN+(KP+s)(N+1)T S (V-42)

which is O(KPN).

105

The DELETE time consists of only the find time and the

store time for null keys, and is given by

TDA KPTclogN+KPTS (V-43)

which is O(KPlogN).

Multidimensional Linear Ordered Data Sets. To ADD and

DELETE a data item using multidimensional linear ordered

data sets requires finding the data item in each of the K!

orderings. This requires a maximum search time of

TfMX = K!KPTclogN (V-44)

followed by the ADD or DELETE operation.

The ADD operation requires moves in each of the K!

orderings which vary as in the single linear ordering

0 < TM< (KP+s)NTS (V-45)

giving the total ADD time a maximum value of

-KTAMAX = KlPTclogN+CKP+s)NTS+Ts)+(KP+s)TS

(V-46)

which is O(KRPN).

The DELETE operation requires only storing null keys

and/or pointers. To store both null keys and pointers

requires

TDMAX = KIKPTclogN+KPTs)+KPTS (V-47)

maximum which is O(RPKlogN).

106

a~ ~~~~~~~ .<& ~A.. .. .%.

However, to store only null key values requires a

maximum time of

TDM = KPTclogN+KPTS (V-48)

or O(KPlogN) time.

This derivation assumes that only one ordering needs to be

searched to find the data item and its key values.

M-way Tree Forms: Fixed Node Sizes. To ADD and DELETE

within all m-way tree forms, the data item position in the

tree must first be located. After it is located, the ADD or

DELETE operation may be performed.

In general, for in-way trees, there is a node search

time to find which branch to take. This node search time is

0 designated TFN.
To find a data item, a sequence of nodes must be

searched, one for each level in the tree. For point

balanced trees, the number of levels is given by L-1 <

log(N+l), where L is the largest integer which satisfies.

For L levels, the general m-way tree find time is

TF = LKPTR (V-49)

For fixed node sizes, where the subtree pointers are ordered

and selected by index. TR includes the time to retrieve K

keys and hash to the proper pointer at each of the L levels.

To ADD data items requires finding the location and

adding the necessary pointers and nodes. The search will

leave the user at some level, LI, such that LI<L, and then

107

to ADD will require adding a pointer, then rebalancing the

tree. The pointer is added in fixed time TS, and the

balancing is done in time TB. The balance time will not be

further analyzed as it can be substantial, and complex in

large trees. The ADD time is given by

TA = LIKPTR+Ts+TB (V-50)

This can be misleading if it is not realized that TB can be

a function of K, P, N, and L. This formulation is not

easily compared to ADD times of other forms.

To DELETE data items can give a similar result to the

ADD operation,

TD = LKPTR+TS+TB (V-51)

but also is not easily compared to other forms.

Region-balanced m-way trees are somewhat easier to

analyze for comparison. No point balancing is needed after

ADD's and DELETE's, and L is fixed, giving an ADD time of

TA = L1KPTR+(L-L1)Ts (V-52)

The structure, must be created from the last match at level

LI, to level L. The DELETE time is given by
r1'

4

TD = LKPTR+TS (V-53)

M -way Tree Forms: Variablat Node Sizes. For all m-way

trees, the time to find where to ADD or DELETE a data item

is given by

108

1-.-- . --71 7

Tf =LTfN (V-54)

However, TfN is a function of m-way tree node size when the

node size varies, so a more accurate measure of search time

is

L

Tf T fNi (V-55)

i=l

The node search time, TfNi, can be estimated for the

different structures. For all the m-way trees, the addition

or removal of the data item is the only other operation to

perform in the ADD and DELETE operation sequence.

0 For region balanced K-D trees, the ADD time is

dependent on the search time at each m-way tree node TfNi,

the number of levels searched, LI, and the number of levels

added to ADD the data item. The node search time is

TfNi = KTC (V-56)

where TC is the time for one compare. This gives the ADD

time for the K-D tree as

L1

TA = KTC +(L-LI)(2 STs+TG) (V-57)

i=1

where 2sTS is the time to store 2 pointers, and the key is

implicit, requiring no time. TG is the time to get a free

109

node. This simplifies further, since there is only one path

per level, to

TA = LIKTc+(L-LI)(2sTs+TG) (V-58)

which is O(LK).

For the CARTAM structure, each m-way node requires

i<ni< 2K CARTAM node compares, TCN. Each CARTAM node compare

requires 2K key precision compares or

T =2KPT (V-59)
CN C

and the ADD time is

,L 1

TA = ni(2KPTc) +(2KP+ 2S)Ts+TG (V-60)

Si=1

= 2KPTC ni +2 (KP+S)Ts+TG (V-61)

i=1

This can vary from ni=l to ni= 2K for all i, yielding

TAMAX = 2KPTCL12K+2(KP+s)TS+TG (V-62)

which is O(KP2KL).

ADAM requires ln <2 ADAM node compares. Each ADAM

node requires K compares, each of a single bit requiring TC

time. However, ADAM requires a repacking of the keys from K

keys to L level search keys adding (KP+LK)TB for packing and

unpacking bits. These give the ADD time as

110

."- TAMAX =LK2KTc+KP+LKTB+L-L)((2s+K)Ts+TG)

(V-63)

which is O(LK2K.

For DELETE times, the insert times for the added nodes

can be ignored and for K-D trees the result is

D LKTc2 +2sTs+TR (V-64)

where 2 pointers are stored and the removed portion is

returned to free storage. This is O(LK).

CARTAM DELETE time is given by

T 2KPTcL2K+2PTTR (V-65)
?: DMAX = (V-65

* - which is O(KPL2K).

ADAM DELETE time for a single data item is given by

T = LK2KT +(KP+LK)T +2s+T (V-66)

DMAX C S+TR (-

which is O(LK2K).

ADAM, however, has a region delete feature, where a

single DELETE can remove all data items within a previously

found region. The time requirements for this is the time

required to traverse all subtrees which contain any points

within the region. If an entire subtree is within the

*region to be DELETE'd, the subtree is removed by storing

only 2 pointers, however, the entire subtree must then be

returned to free storage. This DELETE time for ND data

items can be estimated by

I ii

TDMULT = TDMx+MTF (V-67)

which is depends on the ADAM FIND time, and the number of

FINDs which are performed.

Summary of ADD and DELETE Times. The ADD and DELETE

times for the various methods are summarized in Table IV.

To DELETE whole regions of data points in one operation in

all methods requires merely a more complex compare

operation, and thus a longer compare time. To DELETE an

entire region of n points does not take as much time as n

single data item deletions if the algorithms are adjusted

for region compares rather than single point values, as in

ADAM. Point retrieval can be based on the same concepts, by

using either single points or by using all points within a

region.

112

.._- - . _.'.. . .- . -. ., , ' ' . -' . ;. . " '".

Table IV

ADD and DELETE Time Requirements

K = Number of Dimensions (Associations)
L = Number of Levels in Data Structure
N = Number of Data Items in the Data Set
P = Number of Bits of Precision
R = Stirling's Base for K! Bounds

Maximum Maximum

Data Set Type ADD Time DELETE Time

Linear Unordered O(KP) O(KPN)

Linear Ordered O(KPN) O(KPlogN)

Multidimensional
* Linear Ordered- O(RPN) O(KPlogN)

M-way Trees
-Variable Node

Size * *
K-D Tree O(KL) O(KL)

CARTAM O(KP2KL) O(KP2KL)* ,
K KADAM O(K2 L) O(K2 L)

* For these L = P.

113

S .

FIND and RETRIEVE Time Requirements

Introduction. Generally FIND is part of both the

DELETE and RETRIEVE operations. However, in ADAM they can

be separated, and multiple FIND operations can be performed

before a single DELETE or RETRIEVE is done. This allows

building regions of data for RETRIEVE or DELETE operatons

which are the UNION of several simple FIND regions.

Alternate ways of performing this compound FIND, to be

followed by a RETRIEVE or DELETE operation, on other than

ADAM data sets, are as follows:

1. Perform multiple DELETE or RETRIEVE operations

to eventually cover the entire region; or

2. Perform a complex region compare, instead of

the normal interval compare, for each compare that

would otherwise be done.

The first method is easy and places the burden of

irregularly shaped region handling on the user. The second

may require a fairly complex region description technique

and comparison algorithm. For this analysis, all region

retrievals will be rectangular regions consisting of a

single interval in each dimension. CARTAM uses a Cartesian

measure to retrieve circles or spheres of data, which are

not easy to analyze, so the CARTAM structure will be

analyzed for only rectangular regions. The FIND and

RETRIEVE operations will be considered as a single FIND

operation for all the data forms except ADAM.

4 114

Linear Unordered Data Sets. To FIND a rectangular

region in K dimensions in a linear unordered data set

requires 2 compares on each key for each data item in the

set. This requires a FIND time of

TF = 2KPNTC+NFTR (V-68)

where NFTR is the retrieval time for the NF data items

found, requiring TR retrieval time each. TF is then O(KPN).

Linear Ordered Data Sets. The ordering of a linear

ordered data set can be used only to reduce the N data items

to some number N1<N. To do this, the two extreme points of

the region, under the ordering of the data set, may be found

using a binary search. These extreme points then bound an

interval of N1 data items, which are not ordered properly

for further single key-sequence searches, thus must be

linearly searched. This generates

TF = 2KPlogN TC+ 2KPNlTC+NFTR (V-69)

= 2KPTc(logN +Nl)+NFTR (V-70)

which is O(KPlogN+KPNI). The relative sizes of logN and N1

determine which dominates the expression. N1 can vary from

O(N), for retrievals of most of the original data set, to

0(1), when only a small fixed number of data points are

retrieved. The maximum time is

T = O(KPlogN +KPN) (V-71)

= O(KPN) (V-72)

115

for the linear ordered data set.

Multidimensional Linear Ordered Data Set. For multiple

linear orderings, the search can be on one ordering, as in

the linear ordered data set, or it can be on more of the

orderings. Assuming K keys, K orderings will be used.

First, the binary search time for the K orderings is

calculated. The K orderings use the binary search to locate

the interval, and each of the K intervals may require

further searching. Further searching may be replaced by an

.. - intersection operation on these K interval sets of data

items. The K sets each have ni elements each, for

i=l,...,K. Since the sets are ordered using different key

sequences, the intersection set, of nab data items, is

derived from sets containing na and nb data items each, and

requires nanb compares. To intersect all K sets, one can

perform a sequence of set intersections, each intersection

using a new set and the resulting set from the previous

intersection giving

K-1

TI KPTC ni+iN i (V-73)
Si=l

a where N. is the number of elements left after the (i-l)

intersection, and Nl=n1. The Ni values must form a

nonincreasing nonnegative sequence, such that

O<NK_ 1 ...<NI<N. The extremes are Ni=O for all i=l,..., k,

and Ni=N for all i1, ... , K. This gives

116

K-i

T IM = KPT) ni+1 N 1V-74)

But, for Ni, i>l, ni>N i and for Ni=N for all i=l, ...,K,

n fi=N for all i=l, ..., K. Thus,

K-i

TIMAX = KPTc Z N2 (V-75)

1=1

= KPTc (K-)N 2 (V-76)

= (K2 -K)PN2TC (V-77)

which is O(K2PN
2).

To get the FIND time for a region, then

TF = (2KPTclOgN)K+TI (V-78)

since only K of the K! orderings were used. This gives

T =2K2PTclogN+(K2 _K)PN2 Tc (V-79)
"-TFMAX TcV-9

which is O(K2PN2), for NF=N. However, if one retrieval

comes back with an empty interval, then no further compares

need be performed.

For the multiple linear ordered data set, the search

via a single ordering, starting with a binary search,

followed by a linear search of N1 data items, will result in

T= 2KPTc(logN+NI)+NFTR (V-80)

117

- -. .. * " .. °-. . • i i _ -

which is O(KPlogN+KPN) This gives the same results as for

the linear ordered data set, TFMAX= O(KN), for the

multidimensional linear ordered data set.

M-way Tree Forms: Fixed Node Sizes. The general m-way

tree consists of levels of nodes. Each node is the root of

a subtree, and that subtree includes every data item within

a specific subregion. The subregion of each node at a

specific level has an empty intersection with the subregions

of each other node at that level. The pointers in a node

compose the branches of the subtree rooted at that node.

To find the subtrees of a node which lie within a

region, compares must be performed between the search region

and the region represented by each subtree present. This

requires 2K2K compares, or 2K compares for each pointer.

The m-way tree node compare time, TNC, is

TNC = 2K2KpTC (V-81)

for a node of size 2 pointers. Each subtree compare

returns 3 cases as follows:

1. Subtree region inside search region,

2. Subtree region outside search region, and

3. Subtree region overlaps search region.

For case 1 and 3 the subtree needs to be traversed. For

case 1 the entire subtree can be retrieved without any

further compares, and for case 2 the subtree can be

. eliminated without any further compares. The resulting time

118

of access on any given tree then depends on the number of

nodes which are on the border of the region, NB, and number

of nodes within the region, NW.

For the ith border node, iN,..., the compare time

is TNC i and for the jth included node, j=l, ... , NW, the

traversal time is TTN j. The tree FIND time for the

situation is

N N

TF = TNCi+ TTNj (V-82)

i=l j=

The node traversal time TTN) is fixed for 2K pointers,

assuming traversal over a null pointer takes as long as

ytraversal over a non-null pointer. This yields

TTNj 2KTT (V-83)

and

NB

2KFT Nd + NWT (V-84)
..- i=l

From this comes a worst case, with TNCi = 2K2KPT and for

N~i C

all NB,

NNB = N (V-85)

119

-: and N~ N. This gives

T N B(2K2KPTC)+2KNwT (V-86)

N K
-2KP T1 1/K T+ 2 NWTT (V-87)

which is O(KPN) for the rn-way tree with a fixed node size.

M-way Tree Forms: Variable Node Sizes. The variable

node size forms all have some number of nodes, n1 , for each

rn-way tree node with

0 < n1 < 2K (V-88)

The K-D tree has K < n. K -1 nodes per rn-way tree

node, thus, the comparison time for a single rn-way tree node

is given by

TNCi =n1 T (V-89)

which varies from

- (2 _l)T (V-90)

to

TNCI KTc (V-91)

4Using n MX =(2 K~l) and the value for T NCMAX above, the FIND

time is given by

NB Nw

T =TC iii +TT ni (V-92)

120

which, for

NB N (V-93)

and NNgives

T T N (2 K_1)+TTN(2 K~) (V-94)FMAX TC 2-1l

-NT C+2 KNT T (V-95)

which is O(N2 K) for the K-D tree.

CARTA4 trees have 1<n.<2K nodes per rn-way tree node,

and thus, T NC varies from

2KPT
TNCM K - C (V-96)

a, to

T NCMIN =2KPT c (V-97)

These equations give the FIND time maximum as

N N (V-98)
B 2K _

and N =N, giving

TF!A 2KPT N2 K+TTN2K (V-99)

-2KPTc N +TT2 N(V-100)

which is o(NKP+N2K for the CARTAM tree structure.

ADAM trees are similar to CARTAM for the RETRIEVE, but,

121

ADAM nodes contain only the K bits for its keys, rather than

the 2K keys of P bits each used by CARTAM. ADAM uses these K

bits as its key field in each ADAM node. This gives

T NC = K2KTC (V-101)

and a total RETRIEVE time of

TFMA = KTc N +TT2KN (V-102)
(lN 11/2K

which is O(KN+2KN), or o(2KN). However, ADAM has a

different value for its FIND function.

For the FIND operation, one need only traverse subtrees

which consist of the NB nodes which define the borders of

the search region. This gives ADAM the FIND time of

NB

TF = TNCi (V-103)
i i=l

NB

= KTC Ni (V-104)
Si=

But, 1 < ni < 2K, thus, for

~N
NB = N V-105)B 2K 1

then

4N
T FM-= KTC N (V-106)

1-(1/2 K)

. 122

which is O(KN) for ADAM using the FIND operation only.

ADAM can perform multiple FIND operations in less time

than multiple RETRIEVE operations. To retrieve complex

regions, multiple FIND operations followed by a single

RETRIEVE can be faster than multiple RETRIEVE operations.

Summary of FIND and RETRIEVE Times. The FIND and

RETRIEVE operation times are summarized in Table V. All the

FIND operations are limited by compares that can be done

*with rectangular or convex regions except ADAM which can

utilize successive FIND operations to define a complex,

convex shaped region with a concave surface, disjoint

subregions, or any other describable region form in a single

RETRIEVE.

I1

123

I. I

Table V

FIND and RETRIEVE Time Requirements

K = Number of Dimensions (Associations)
N = Number of Data Items in the Data Set
P = Number of Bits of Precision

Non-primary Key Search
Data Set Type Maximum Time

Linear Unordered O(KPN)

Linear ordered O(KPN)

Multidimensional
Linear Ordered O(KPN)

M-way Tree
-Fixed Node Size O(KPN)

-Variable Node Size K
K-D Tree 0(2KN)

CARTAM O(NKP+2K N)

ADAM FIND _0 (KN)

RETRIEVE O(2K N)

124

~~1

Table VI

Performance Ranking of Techniques

Data Set Type Space ADD DELETE FIND

Linear Unordered 1-5 1,2 6 2-4

Linear Ordered 1-5 5 2,3 2-4

Multidimensional
Linear Ordered 6 6 :23 2-4

M-way Trees
-Variable Node

Size
K-D Tree 1-5 1,2 1 5,6

CARTAM 1-5 4 5 5,6_
. *

L ADAM 1-5 3 4 1

* ADAM retrieves an associative data set, while all the
others retrieve sequential data sets. Retrieving a
sequential data set, ADAM is comparable to K-D trees.

ADAM Performance Optimization

Table VI summarizes the relative performance of the

different methods which currently are used in associative

access applications, and ADAM. By selecting ranges of

values for the precision, P; the number of levels in the

tree, L; the number of dimensions, K; and the number of

retrieval regions, M; all relative to the other parameters,

ADAM can be shown to have a performance exceeding all other

methods in most operation. These ranges can be found for

large values of N, the number of data items.

These parameter ranges can be set by checking each

125

- -• . ,k. --.....

category of analysis, space, ADD time, DELETE time, and

FIND/RETRIEVE time.

Space. For L = log N ADAM uses the least space. This

is because ADAM takes advanatage of redundant significant

lists in the values. For K and P such 2K > KP the m-way

tree with fixed node size is worse than linear data sets

(see Table III), but for 2K < KP it is tied with them.

For all the region-balanced m-way tree forms with

variable node size the order of space requirement is the

same as for the linear data set. However, for L = log N

ADAM is reduced to O(NK) and is more space efficient than

any of the other techniques.

ADD Time. ADAM came in third for ADD time. The 2K

compares possible at each level make ADAM worse than a

linear unordered or the K-D tree (see Table IV), but for

2 < N ADAM is still better than linear ordered or CARTAM.

DELETE Time. Here ADAM came in fourth. The single

data item search time with 2K compares at each level made

the difference again. However, if 2K is less than log N

then ADAM can be in second place (see Table IV), behind only

the K-D trees. If ADAM is called upon to delete a number of

regions, it can delete them all in a single DELETE

operation, by applying multiple, faster, FIND operations to

define the regions to DELETE first, then deleting them all

in one operation.

FIND and RETRIEVE Time. The forte of the ADAM

S. technique is its FIND operation. The ADAM FIND operation

126

allows irregularly shaped regions to be easily defined by

multiple rectangular retrieval regions, and through the use

of multiple FIND operations, defines the multiple rectangles

as a single region. This region can then be deleted or

retrieved in a single operation. For the purpose of this

project, CARTAM was analyzed for rectangular region

retrievals, however it actually uses circular or spherical

regions. Since multiple circular and spherical regions

don't efficiently cover a region without overlap,

rectangular regions were used. The multiple FIND operations

of the ADAM technique, followed by a single RETRIEVE or

DELETE, replace the multiple FINDs or DELETEs required by

each of the other techniques.

Each of the methods could be implemented to use other

than rectangular search regions, however this would have to

be a much less generalized implementation than is defined

for this project.

The ADAM, FIND operation retrieves an associative data

set, and is the best performer here. One may argue that P

bits of precision are one compare, giving O(KN) in the

linear methods, but examples to the contrary are 32-bit

values on an eight-bit machine, or 512 digit numbers on any

modern machine. Likewise, for small values of K, ADAM can

perform one compare for all K fields at each node, giving

O(N) performanace, however, for large enough values of K,

multiple compares may be needed.

For actual comparison of ADAM to the other methods a

127

retrieval of sequential data set may be a good example. For

a region retrieval, where the region is composed of M

rectangular regions, the other methods all require

multiplying the retrieval time for the method by M.

However, for ADAM it becomes

TF = M O(KN) + 0(2 KN) (V-107)

= O(MKN + 2KN) (V-108)

=O(N(MK +2K) (V-109)

for MK + 2K < MKP ADAM is still more efficient for the

retrieval of a sequential data set.

Overall. To get the best "worst case" performance from

ADAM, specific parameters must be considered, i.e.

- Space, p = L = log N
- ADD time, 2K < N

- DELETE time, 2K < log Nt" 2K

-Sequential RETRIEVE time, M >

These restrictions put ADAM first in space requirements

and sequential data set time requirements, and second only

to K-D trees in ADD and DELETE time requirements.

Run Time Performance Analysis

Project time constraints prevented the installation of

timing measurement instrumentation into the ADAMTEST program

package. The package could have contained start time and

128

. stop time checkpoints, and allowed all operations to be

timed after their initiation. These start and stop time

values could then have been compared to a comparable set of

operations using some of the other techniques. Each

technique would have been implemented with a similar top

level interface such as ADAMTEST. Allowances also should be

made for multiple operations such as a series of data ADDs,

DELETEs, and RETRIEVEs. These operations could then have

been timed and compared in an actual working environment,

but the environment would be have been standardized enough

to eliminate differences caused by different implementation

techniques.

The suggested techniques to implement for comparison

are the linear ordered data set and the K-D tree data set.

The linear ordered data set is the commonly used "milestone"

for comparison, and the K-D tree is the most recently

acclaimed associative access technique. Using real time

test runs on these techniques could have given a realistic

way to validate the results of the theoretical analysis.

Analysis Summary

The theoretical analysis of the different techniques

for performing associative access to data gives a clear view

of some of the problems with those methods. Each technique

has advantages and its disadvantages, and only a technique

which has been picked for a specific application can be

. 2 guaranteed to be a good performer. ADAM performs well when

applied to a particular combination of problems present in

129

°,A

very large databases. ADAM especially appears to be well

suited to the case where the keys are very long, although

more than just a few keys can seriously degrade its

performance.

Much more analysis is needed in the area of irregularly

shaped or disjoint region retrieval. Also, some run time

analysis is needed. Many possibilities for application

exist, and each application needs a comparison analysis to

choose among these techniques.

130

VI Results

Introduction

ADAM models homogeneous real world data associations.

This chapter covers the model characteristics as described

from Chapter II and III. The implementation code

characteristics are then mentioned, as well as the data flow

diagrams in Appendix B, the Warnier-Orr data structure

charts in Appendix C, and the complete ADAM program package

* source listing in Appendix D. Theoretical performance of

the model implementation, from the analysis in Chapter V is

then discussed. Finally, the functional tests performed on

ADAM are discussed, with references to the test run listings

O in Appendix E.

Data Model Characteristics

The ADAM data model is derived in Chapter II, and

refined in Chapter III. The model is restricted to data

representable as having K homogeneous associations, where

1<K. To represent an association in the ADAM model, the

associatiton must be mapped to numerical values in the half

open interval [0,1). The user then determines the data

resolution desired, and sets the level number to the number

of bits required for that resolution. Once the data is

stored in the ADAM association model, the data can be

retrieved on any combination of association value, or key,

intervals.

To retrieve an irregularly shaped region the user

131

*

merely defines multiple rectangular regions to approximate

the region shape, then retrieves the entire region in one

RETRIEVE operation. Region definitions can be made

independent of a single dimension, or association, by

specifying the range for that dimension as (0,1].

The ADAM data model allows the definition and retrieval

of multiple data items by region. The regions can be any

union of rectangular retrieval regions, thus allowing

disjoint and irregularly shaped retrieval regions. Chapter

III and IV give the design and describe the implementation.

The code is dicussed next.

Code Characteristics

The more than 1600 lines of code in the ADAM program

package are highly structured. Following the requirements

set forth in Chapter II for quality assurance, ADAM was

designed and implemented in a generally top-down fashion.

Some anticipated low-level functions are exceptions to the

top-down implementation. This structure is shown by the

data flow diagrams of Appendix B. Strict modularity was

enforced, and is discussed further in Chapter IV in the

section "Program Modules". The needed data structures were

defined for clarity using the Warnier-Orr data structure

diagrams in Appendix C. The full source code is given in

Appendix D.

Machine dependent and language dependent features were

avoided. Though Pascal was the language used, recursive

procedure calls, pointer variables, and "hidden storage"

132

management procedures were avoided to allow easy translation

of the programs to FORTRAN or other medium to low order

languages.

The implementation was designed for easy functional

testing and algorithm debugging. For this reason, the total

ADAM map buffer size was restricted to 50 nodes. This

allows about 10 data items in a 6 level structure. The

implementation also limits the number of dimensions to

1<K<10, the number of regions to 0<R<8, and the number of

levels to 3<L<16. For general applications these limits may

be easily adjusted.

All user inputs are tested to assure they are within

the legal limits. Il.gal inputs are either ignored, with

the prompt repeated, or used as a signal to abort a portion

of an operation. The checking and "HELP" command list

combine to make the package a useful training aid for

teaching the use and interpretation of the ADAM model.

Although the program package does not contain

instrumentation for evaluating performance times, The

performance times were estimated and compared to other

access techniques.

Theoretical Performance

In Chapter V, different techniques for associative data

retrieval are analyzed for storage space, ADD time, DELETE

time, and FIND time requirements. ADAM was shown to be the

* .most space efficient of the methods if the number of levels

is chosen properly. ADAM ADD and DELETE times were good,

133

°o ,*

but not the best, and ADAM's FIND time was outstanding. The

drawback is that the ADAM FIND retrieves an associative data

set which must be translated to a sequential data set for

use. However, this translation is done by a RETRIEVE

operation which is comparable in speed to the FIND

operations of the best of the other access techniques.

The theoretical analysis makes ADAM appear extremely

fast and storage efficient for large amounts of data.

However, due to time constraints, timing instrumentation and

alternate access techniques were not implemented for

comparison. The code, however, was written for ease of

maintenance and upgrade, so instrumentation could be added.

The program package is interactive, and includes a DEBUG

package which allows complete functional testing.

Functional Tests

*To debug and maintain the software package, a DEBUG

library was included in the ADAM package. The DEBUG

.. operations allow a formatted dump of the ADAM map nodes.

Using the DEBUG features, a complete functional test

sequence is given in Appendix E. The operations ACREATE,

AADD, ARETRIEVE, AFIND, and ADELETE were each tested. As

the map structure was modified it was dumped to print to
4

allow validation of all the map node's contents.

Summary

high performance quality. It is the most space-efficient of

* 134

the techniques analyzed in Chapter V, and it has the

shortest FIND time. Functionally it works exactly as

specified in Chapter III. However, no time performance

comparisons have been made.

The software packages use software engineering

practices throughout to help guarantee quality as required

in Chapter II. The 1600 plus lines of code are modular,

well-commented, and otherwise fully documented in this

thesis. They are also written for human interface,

including input testing, meaningful prompts, and "HELP"

displays.

The data representation and access may be unfamiliar to

new users, and thus, the software package generated can

e serve as an introductory learning tool, allowing the user to

later apply the ADAM algorithm set to specific applications.

ADAM is a revolutionary concept for representing and

accessing data.

The ADAM concept is a valid solution to the secondary

key access problem.

135

VII Conclusions and Recommendations

Conclusions

ADAM appears to be the basis for a new approach to data

access. It consists of good concepts from several other

techniques, combined in a new data representation. The data

representation and its associated algorithm set is

incorporated into a high quality software package. The

result is a versatile solution to the multikey retrieval

problem.

The ADAM map derives its overall structure from CARTAM,

but changes the tree structure's key form. The result is a

new data representation. The ADAM algorithm set is defined

to "hide" the actual implementation from the user. The

resulting associative access method gives both space

efficient data storage, and rapid data retrieval.

The ADAM software routine package was generated using

. . the highest quality software engineering techniques. These

include rigid top down structure, modularity, and quality

documentation. These combine to make the package easily

understood and maintained, as well as making the package

easy to use for varied applications.

The ADAM package gives a quality solution to the

multikey access problem. The result gives easy access to

data via data item key match queries, key range queries,

and, something not common in current literature,

• .multidimensional key region queries.

136

ADAM has the potential for widespread use in database

access, computer graphics, and pattern recognition. However

each of these areas of possible application need researched

further.

Recommendations

The ADAM package needs further analysis. Some of the

areas needing further investigation include ways to make it

handle large volumes of data and multiple simultaneous users

by implementing

-ADAM map checkpoint and restore operations,

-Virtual index access to the ADAM map buffer, and

-Parasitic map retrieval operations.

These are necessary for large database applications. Also,

a generalized region compare operation should be

investigated for applications in pattern recognition.

ADAM requires further analysis relating performance to

data set parameter values such as number of attributes per

data item, bits of precision per attribute, and data items

per data set. Also ADAM' s sensitivity to data point

distribution patterns within the data region should be

investigated. Parameter combinations and point distribution

77 patterns which easily lend themselves to the ADAM structure

should be analyzed in depth. Specific criteria should be

established for when and whore an ADAM technique should be

applied rather than one of the other available access

techniques. Analysis should also include actual run time

137

: . . , o -. ° i - .

comparisons.

Some capabilities should be added to the basic ADAM

algorithm set, along with the necessary map modifications.

These are as follows:

-Parasitic Map access

-Generalized region compare

-Disk save/restore for ADAM maps

-Virtual map buffer pointers and indexing

Parasitic maps should be implelmented for a multiuser

environment. These should be analyzed for performance,

maintainance or database integrity, and speed of access.

Before ADAM maps can be made very large, disk

save/restore routines should be implemented to checkpoint

and restore the maps. Also, for limited memory machines a

form of virtual indexes to access data address spaces

exceeding the user's computer memory size should be

considered.

The generalized region compare is a pattern recognition

feature of ADAM. The user predefines region "categories" in

the database, then the ADAM map can be accessed via a single

data item, returning a region indicator. This would allow a

user to have a "find category" query for data points. A

fast query of this sort is a new approach to the decision

functions discussed in Nilsson's Learning Machines (Ref.

22).

* .-The availability of rapid access to variously shaped

138

regions using ADAM, makes ADAM a candidate for graphic scene

generation from 3-dimensional "point" models. This

capability of ADAM should be investigated further for

application in projects such as aircraft cockpit simulators,

robot environment modelling, and design automation.

139

- -* ... ' = - - - -

BIBLIOGRAPHY

1. Aho, A. V., J. E. Hopcraft, and J. D. Ullman. The
Design and Analysis of Computer Algorithms. Reading,
Massachusetts: Addison-Wesley Publishing Co. 1974.

2. Baer, J. Computer Systems Architecture. Rockville,
Maryland: Computer Science Press, Inc., 1980.

3. Bentley, J. L. "Multidimensional Binary Search Trees
Used for Associative Searching," Communications of the
ACM 18, (September 1975).

4. ----- "Multidimensional Divide and Conquer."
Communications of the ACM: 214-229 (Apr 1980).

5. Bentley, J. L. and R. A. Finkel. "Quad Trees: A Data
Structure for Retrieval on Composite Keys," Acta
Informatica 4: 1-9 (1974).

6. Bentley, J. L. and J. H. Friedman. "Data Structures for
Range Searching," ACM Computing Surveys, 11: 397-409
(December 1979).

7. Chistofides, N. Graph Theory: An Algorithmic Approach.
New York, New York: Academic Press, 1975.

8. Comfort, D. and W. Erickson. Relational Information
Management System (RIM). Computer program source
listirg. Seattle, Washington: Boeing Commercial
Airplane Co., January 1981.

9. Date, C. J. An Introduction to Database Systems. Third
Ed., Reading, Massachussetts: Addison-Wesley Publishing
Co. 1981.

10. Horowitz, E. and S. Sahni. Fundamentals of Data
Structures. Potomac, Maryland: Computer Science Press
Inc. 1979.

11. Hunter, G. M. and K. Steiglitz. "Operations on Images
Using Quadtrees," IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1: 145-153 (January 1979).

12. "Linear Transformations of Pictures Represented by
Quadtrees," Computer Graphics and Image Processing, 10:
289-296 (1979).

13. Ichikawa, T., Y. Tajima, and M. Yamamura. "Retrieval of
Image Features in Terms of Content-Addressing of
Hierarchically Structured Image Data," Paper presented
at the IEEE Computer Society Workshop on Picture Data

140

.. ,. ... "

Descriptions, 1980.

14. Jensen, K. and N. Wirth. PASCAL User's Manual and
Report. Second Ed., New York, New York:
Springer-Verlag 1975.

15. Knuth, D. E. The Art of Computer Programming Vol 1:
Fundamental Algorithms. Reading, Massachusetts:
Addison-Wesley Publishing Co. 1968.

16. The Art of Computer Programming Vol 3: Sorting
and Searching. Reading, Massachusetts: Addison-Wesley
Publishing Co. 1973.

17. Lillie. Class notes from EE 688, Computer Architecture.
School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio. 1981.

18. Madnick, S. E. and J. J. Donovan. Operating Systems.
New York, New York: Mc Graw-Hill Book Company, Inc.,
1974.

19. Munro, J. Ian and Henra Sewanda. "Implicit Data
Structures for Fast Search and Update," Journal of
Computer and System Sciences, 21 (2). (October 1980).

20. Nakano, K. "Associatron- A Model of Associative Memory,"
IEEE Transactions on Systems, Man, and Cybernetics
SMC-2: 380-388 (July 1972).

21. NASI 14700. User Guide: Relational Information
Management (RIM). Seattle, Washington: Langley
Research Center National Aeronautics and Space
Administration, June 1981.

22. Nilsson, N. J. Learning Machines. New York, New York:
McGraw-Hill Book Co. 1965.

23. Oppen, D. C. "Reasoning About Recursively Defined Data
Structures." Journal of the ACM (27): 403-411 (July
1980).

24. Petersen, Steven V. CARTAM The Cartesian Access Method
for Data Structures with N-Dimensional Keys.
Headquarters, Strategic Air Command, Offutt Air Force
Base, Nebraska, Reprint of material for his PhD
dissertation at California Institute of Technology.

25. Rutledge. Class notes from EE 686, Information
Structures. School of Engineering, Air Force Institute
of Technology, Wright-Patterson AFB, Ohio. 1982.

2 - --26. Class notes from EE 693, Software Engineering.
School of Engineering, Air Force Institute of

141

.3 . . * A

: Technology, Wright-Patterson AFB, Ohio. 1981.

27. Rux, P. T., F. W. Weingarten, and F. H. Young. Serial
Associative Memories. Livermore, California:
University of California, Lawrence Radiation Laboratory,
December 13, 1966. (UCRL-70270).

28. Samet, H. "Region Representation: Quadtrees from
Boundary Codes," Communications of the ACM: 163-170.
(March 1980).

29. Seelandt, Karl G. "Computer Analysis and Recognition of
Phoneme Sounds in Connected Speech." Unpublished MS
thesis. School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio. December 1981.

30. Thurber, K. J., and L. D. Wald. "Associative and
Parallel Processors," ACM Computing Surveys 7, (December
1975).

31. Weiderhold, G. Database Design. New York, New York: Mc
Graw-Hill Book Company, Inc., 1974.

32. Wiener, N. Cybernetics: or Control and Communication in
the Animal and Machine. Cambridge, Massachusetts: M.
I. T. Press, 1961.

33. Winston, P. H. Artificial Intelligence. Reading,
Massachusetts: Addison-Wesley Publishing Co. 1977.

34. Wirth, N. Algorithms + Data Structures = Programs.
Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1976.

35. Woolridge, D. E. The Machinery of the Brain. New York,
New York: McGraw-Hill Book Company, Inc., 1963.

142

APPENDIX A

MULTIDIM4ENS IONAL DATA

STRUCTURES

143

A. Multidimensional Data Structures

Introduction

This appendix presents some of the main data structures

which are currently used for multidimensional or associative

data access. First some classical problems in data

representation are discussed, then the recently acclaimed

associative data structures are compared to the less well

known CARTAM structure of Petersen's.

Petersen (Ref 24) has recently published a new method

of representing multidimensional d-ta in sparsely populated

regions. His method is based on an older popular method,

but the older method has drawbacks which keep its

*q performance below other more recent and radically different

structures (Ref 6). Revising the older method, Petersen

overcomes its major failings. The result is far superior to

the other techniques for storing and manipulation

multidimensional data.

Classic Data Structures

Numerical Mappings. One dimensional data is linear.

If it has a smallest value and a finite number of larger

values, these values can be mapped directly into consecutive

computer memory addresses. As long as there are at least as

many addresses as data points, data can be linearly stored

in the computer memory. Two or higher dimension data must

be mapped into a linear form to be stored in a computer

memory. This is not difficult if the number of data points

144

I., .

is small enough, but the space occupied grows exponentially

with the number of dimensions mapped into the line. For

example, with 10 data divisions in each dimension a

three-dimensional space requires 1,000 memory addresses,

while a four-dimensional space requires 10,000 memory

addresses. The need for memory is explosive for higher

dimension spaces. As long as the memory region is filled

with useful data the numerical mapping is space efficient

and gives rapid access.

Non-numerical Mappings. Most applications of data

representation of high-dimensional data do not require every

point of a grid to be represented. In fact, often the

region can be less than ten percent filled. With this

assumption, only a small portion of the addresses in memory

would be used with the above defined mapping. To eliminate

the waste of unused memory and allow efficient access of

data without searching through unused data entries, logical

data structures called trees, grids, and linked lists are

used. The only data entries which are needed in these

structures are those entries which exist in the represented

region. Trees, grids, and linked lists are highly

structured, and thus useful for only specific types of data

access (Ref 15). Trees give rapid access, by value, to a

single element. Grids give rapid access to all data entries

"near-by" in value. Linked lists are used for data in

linear organization.

145

Problems Encountered. Trees, grids, and linked lists

(Ref 15) do not give flexible access . Each has its own

use, but each also has its limitations. None can serve the

tasks well supported by the others. To efficiently

implement all of the relevant operations on data a more

versatile structure is needed. Bentley (Ref 6) discusses a

number of structures and the strong and weak points of each.

The data structures Bentley discusses (Ref 6) have

- . substantial overhead in use of memory addresses and program

code. Additional memory addresess are needed to store

pointers to other regions within the data structure. This

can add 10-20 percent overhead on storage, occasionally as

much as 200-300 percent overhead. To traverse the

structure, programs must be able to follow these pointers,

thus the complexity of the programs is increased, and for

certain awkward operations the time required to perform the

operations is increased over the same operations on a linear

representation (Ref 19).

Associative Data Structures

As currently applied, trees appear to be the most

- efficient structures to use for multidimensional or

. associative data access (Ref 6). Specialized tree forms

have been created to allow multidimensional data access.

The main forms are the quad tree, the K-D tree, and the data

structure used in CARTAM.

Quad Trees. Many current sources on pattern

recognition use a tree form called the quad tree to get the

I 146

4H- ..- , -

- Upper Level

Current Level at

Pointers to Lower Level

Fig 20. Quadtree Node
(3 Dimensions, 2 Sub-regions Occupied)

flexible access derived from trees yet retain a two

dimensional search capability (Ref 11; 12; 19). The quad

tree is actually an m-way tree with a fixed node size (Ref

10:496). However; this form is not space efficient when

extended to more than two dimensions. The quad tree must

have a pointer at each node for each half of each dimension.

In two-dimensional space, a node divides its region into

four quadrants, hence the name quad tree, and the node must

have a pointer to each quadrant. If some of those quadrants

are empty, the pointers must still exist to retain a

* standard node size and node format as in Figure 20. If the

space were six-dimensional, there would have to be 64

pointers at each node, and the number of pointers doubles

for each added dimension. The quadtree solves most of the

problems of multidimensional access, but this wasted space,

argues Bentley (Ref 6:407), makes the K-D tree better than

the quad tree.

147

Upper Level 3rd Dim Data

l st Dim Data

Current Level 2nd Dim Data Data

3rd Dim Data Data Dat

Pointers to Lower Level 1st Dim

Fig 21. K-D Tree Levels
(3 Dimensions, 2 Sub-regions Occupied)

K-D Trees. The K-D tree is a binary tree where, for k

dimensions, every k-th node represents a division in the

same dimension at the next lower level in the structure.

Each tree node represents a border between two ranges of

data in a single dimension. In searching down a tree to

access data, a decision is made at each node to reject half

of the data, based on the value of a single dimension (see

Figure 21), and continue the search in the other half of the

data. This search is fine if every dimension is required

for the search. If any dimension is not used in the search,

then the choice to be made at the node representing that

dimension is irrelevant to the problem, and thus both

branches beneath the node must be searched. Bentley (Ref

6:404) defines these as K-D trees and claims they are the

best trees for any search, showing comparisons with several

148

Upper Level Data

Current Level. Data Data

Pointers to Lower Level

Fig 22. CARTAM Structure Levels
(3 Dimension, 2 Sub-regions Occupied)

other tree forms.

Another more serious problem with the K-D tree is that

the decision criteria for every dimension except the first,

at each level, must be duplicated for every cell at that

3level and dimension. This is not significant for small

numbers of dimensions, but for six dimensions this means the

sixth dimension's decision criteria may have to be copied 32

times.

CARTAM. Petersen (Ref 24:21-23) uses a version of the

quadtree to represent multidimensional data. He creates a

linked list of small cells which, together with their parent

cell, make up the needed pointers of a single quadtree node

as in Figure 22, and the data areas of the subordinate

quadtree nodes. Being a linked list, only those cells which

* are needed to point to subordinate regions need be present,

thus saving space where subordinate regions are not

-- occupied.

The structure has the drawback of requiring a linear

-* 149

"-: '" '''"iI. "........ • • ' " " i b -.. ,-- -- ' '... . ' -.- .' .

search of the linked list of subordinate cells to find those

cells which satisfy the search criteria. For six dimensions

this means only 64 elements possible per level, but for 10

dimensions this is 1024, doubling in size for each added

dimension.

Petersen does not optimize his data storage, and leaves

his structure with a larger data storage overhead than

needed, however his revised node structure can be expanded

to any number of dimensions.

Conclusions

Bentley (Ref 6:407) analyzed and rejected the quadtree,

but it is still common in current literature (Ref 11; 12;

19). Petersen (Ref 24:21-23), by revising the quadtree

slightly, eliminated the very difficulties Bentley had used

to reject the quadtree. Petersen's structure, though

requiring some optimization of data storage, is a more space

* . efficient structure than the quad tree or K-D tree for

representing multidimensional data in sparsely populated

* - regions.

150

APPENDIX B

ADAM

DATA FLOW DIAGRAMS

(DFD)

151

Data Flow Diagram List

- .0 ADAM Routine Package

1.0 ACREATE

1.3 NEWBUFF

2.0 AADD

2.1 CRTLS(

2.11 BITPU

2.2 MAPSRCH

2.3 BUILDB

2.34 RETCELL

2.4 NODEINS

3.0 AFIND

3.3 AREGCOMP

3.4 AMAPTRAV

3.41 AMOVE

3.5 ARSET

4.0 ADELETE

4.2 ARSEI1ECT

4.4 REMNODE

5.0 ARETRIEVE

* 152

i

i u 0.0 ADAM Routine Package

;User

K

f Size____- 1.0
Create

SADS Ma
,2 I 2.0

Add

AD- AoData DaDataUserItmIe

':" 3.0

Region Find
Index Size ADS

2.0AA4.0ij 1Delete
RegionUser

5.0 ARTR5.0

ADS-- Associative Data Set
1SDS-- Sequential Data Set; -" RD--- Region Definition

[.<Size- Max Size of ADS
K----. Number of Dimensions

r-1.0 ACREATE
S2.0 AADD
i: 3.0 AFIND

4.0o ADELETE
5 .0 ARETRIEVE

"i Fig 23. DFD of ADAM Algorithm Set

i153

1.0 Create map (ACREATE)

ADS Diector

SiLoes Level1.

1.3c ValdWBrmt'FF4

Figu 24. DFDrfeACEAT

AD4ietr

Fi 24 .F of ACREA.

V.-.,1.3 Format Empty Map (NEWBUFF)

1.32

.433

Se55U

Header.-

2.0 Add Data Item (AADD)

-~2.1

Data ILocationt

2.1K CRTL

2.2 !4PS2.2

2.3c 2UI.3

2.4er 2.4IN

2.g 26 DFD oSAAD

156

2.1 Create Level Search Keys (CRTLSK).

2.1

Transpose

LSK~~an ReevlveachKe

* Lowest Level

2.11 B2.13

2.13 BITPU (see 2.11)

Fig 27. DFD of CRTLSK

157

2.11 Bit Pack/Unpack (BITPU)

Data value Unpack

Pack/UnpackVFlag

Fg 28.DF o BTP

158

* "2.2 Search Map for Match (MAPSRCH)

Map Location Stack

> New Current
m //Map Map

2.21 ocation Location.ii-?-: Ini tialize
:?}i Location

-' LSK L

Fig 2. 22*
ADS Compare/: Node

""Node Move
lii:Contents Direction

,_2.23*
.: Move to
,. : Next Node

• . 2 -h AAM Map

.. ADS Associative Data Set Match Location

.--. LSK Level Search Key

• Lowest Level

I:"-,Fig 29. DFD of MAPSRCH

159

2.3 Build New.Branch (BUILDB)

Node Revised

Contntsonent

2.31 ContenLL

2.34 RETCEL

Fig 30 SDDofeID

160

No.e

2.34 Return Free Node (RETCELL)

NNode

Node Contents

-* ~~ADS AscaieDt e

4.43
Pu Nd

ino re
Strg

2.4 Insert New Branch (NODEINS)

MaP Node New
Directory Contents NodeNod \ onent

La Associ CheckNode

* LowestaLeve

642*
Checki! Position

' . ~ Insert Location

:" Insert
? Below

: 2.44*
• i Insert

_ Into

- ADS Associative Data SetLel

- * Lowest Level

Fig 32. DFD Of NODEINS

~162

o.r

;.-

3.0 Find Region (AFIND)

Map Position Stack
Region Index 3.1* New Currentr.Initializej Map Map

Position Position Position

A MoADS

RD~~Rgo Reinneinto

:. A AcRD.• Node Trac

- 333.3• .; Traverse
,' .:the
! - Map

Results

3.4 NodeSe Status

' New Node
,ADAM Map Contents

RD Region Definition3.

ADS Associative Data SetChc

•Lowest Level Sau

.' 3.2 • AREGCOMP
I 3.3 AMAPTRAV
i 3.4 ARSET

Fig 33. DFD of AFIND

.K

163

3.2 Compare Region and Node Trace (AREGCOMP)

::;!Trace 3.21"

." Build
Trace Center

Value

i 3.22*
Compare

One Dimension
Dimension Compare

Results

Dimens ion

* Lowest Level

Fig 34. DFD of AREGCOMP

•-I

164

• /:-7

3.3 Traverse the Map (AMAPTRAV)

PosiLones Leve

ADS MovStatusu

3.31 DiOrecto .

Node 353DD fAMPTA

Results165

3.31 Move Through the Map (AMOVE).

Direction Mv

Node 36.DF o1AOV

CotnsMv

DonNwmpPsto

old 166

3.4 Set Region Flags (ARSET)

Node Results .2

Rigg37. DFiel ofiARSE

LoainLcto

1673

4.0 Delete Pegion (ADELETE)

Conent Nod*ew ontents

ADiaM iz MapMa

ADPsoitie Dataio Settio

4.2e A4SLEC

4.3

4.2 Get Region Flags (ARSELECT)

Node Contents P (e.

Figi39. F Field
LocationLocation

Get *
Region

Bit Region
!i *Lowest Level Flag

•*Calls BITPU (see 2.11)

' !" Fig 39. DFD of ARSELECT

16J

169

(~. 4.4 Remove Node (REMNODE)

Free Node
Location

ositio Levele

4.43 ETCEL (see2.34

Fig 40. DFD of REI4NODE

170

5.0 Retrieve Region (ARETRIEVE)

SDS Seqenia Data Seten
AD soiaitivlie Data Sep

5.2 e 5.2EEC

5.6~Ge AMPTAV(se .3

Pig41.Dgio ARlTagV

171g

. - . .. *

APPENDIX C

DATA STRUCTURE DIAGRAMS

172

Data Structure Diagram List

Associative Data Set (ADS)

ADAM Map

ADAM Buffer

Sequential Data Set (SDS)

Region Definition (RD)

Level Search Key Data Set (LSK)

Map Position Stack

Trace Stack

°.1

":" 173

- . ' .

Simple Variables Referenced

MAXNODES - Maximum ADAM map buffer size

MAXDIM - Maximum number of dimensions allowed

MAXREG - Maximum number of regions allowed

MAXDI - Maximum number of data items allowed in
a sequential data set

NDIV - Number of data item vectors returned in
a sequential data set

NUMDIM - Actual number of dimensions in a map

NUMLEV - Actual number of levels in a map

.01

, ,

17

Associative Data Set (ADS)

fDirectory (1 time)
ADAM Map Node (MAXNODES + 1 time)

Number of Dimensions (1) (1 time)

Number of Regions (1) (1 time)

Directory Number of Nodes (< MAXNODES) MI

(1 time)

Number of Levels (I) (1time)

Sibling/Parent Pointer (1) (1 time)

Child/Data Pointer MI (1 time)

Node Key Data Field (B) (MAXDIM times)

Region Flag Field (2B)

(MAXREG times)

-.1

MI - integer variable

(B) - 1 bit field

(2B)- 2 bit field

.-."

I~'i 2 ADAM Map N D at (AODStru1ctre

175

Alternate View of ADS Buffer

Directory (1 time)

ADAM Buffer Node (MAXNODES + 1 times)

Directory (Integer word (4 times)

Node { Integer word (4 times)

Fig 43. ADAM Map Buffer Data Structure

:17

"3"':)176

Sequential Data Set (SDS)

Sequential Data Item Vector

Data Set . (MAXDI times)

Data Item Vector Integer (MAXDIM + 1 times)

SDS Retrieval Data Structure

Number of Data Item Vectorsf (NDIV, I) (1 time)
SDS Data Item Vector (NDIV times)

[Data Item Value (I) (1 time)
Data Item Vector Data Item Dimension Value (I)

. (NUMDIM times)

Fig 44. Sequential Retrieval Data Structure

177

P. ,r

Region Definition (RD) Data Set

Low Value Array (1 time)

RD High Value Array (1 time)

Low Value Array f Dimension Low Value (I)
(NUNDIM times)

High Value Array Dimension High Value (I)

(NUML'- times)

Fig 45. Region Definition Data Structure

178

Level Search Key (LSK) Data Set

Level Search f Level Search Key (I)
Key Vector (NUMLEV times)

Fig 46. Level Search Key Data Structure

Map Position Stack Data Set

Map Position f Position
Stack (NUMLEV times)

Parent Pointer (I) (1 time)

Current Pointer (I) (1 time)

Position Lastone Pointer (I) (1 time)

Nextone Pointer (I (1 time)

Region Index (I) (1 time)

Fig 47. Map Position Stack Data Structure

179

Trace Stack Data Set

Trace Stack Level Search key (NUMLEV Times)

Level Search Key Dimrension Decision Bit (B)

L (NUMDIM times)

Alternate view

Trace Stack Dimension Trace (I)

(NUMDIM times)

Fig 48. Trace Stack Data Structure

180

OF TECH WRIGHT-PATTERSON AFI OH SCHOOL OF ENGINEERING
J R HOLTEN DEC 82 AFIT/GCS/EE/82D-19

UNCLASSIFIED F/G 9/2 N

EEsomhohohEoi
EohhhhhmhohhhE
EhmhEmhhmhhhEI
smhhhhhEEohhE
smohEohhohEshI*flfllflfllflf FEND

'a'

4--6-

~E~oUo

La II-12.6- 22 .0,..

I:--

*.MICROCOPY RESOLUTION TEST CHART

-
1

NATIONAL BUREAU OF STANDARDS-1963-A

11-

- . m a - ' .

, .-
--.i '-'''-:.: ,- -",,,.,.,.-.., . . Z- ? II..... : .:(J :/: F:, , : .:i ::: i:i : i : .-: :::

APPENDIX D

SOURCE LISTINGS

18

12181

7

Listing Contents

ADAMTEST Library. 184
HEL* o o . o a . • . • o . . • . o o . . . o• 8

ADAMCONTROL . o . * . . o 187

INITIALIZE. 189

Main Body . . . o o o o 190

AINTER Library. o . o o . . o . o o o o . . 191

OUTBITS 192

ADOUTVEC 193

IA . o o . . . o o o o . . . o oI A 194

OUTDIV E . o o . o o o . . . o o 195

INPDIV. o . o o o 196

ADEBUG Library. . o 197

Ma B od o o o o o o o 198

A LPRTNODE o 199

AOUTDIR * . o .o 200

HELP o . o o 201

iiD U M P D A T o o 2 0 2

Main Body 203

" ALIBI Library ... ooo000000.. v204

AADD (12.0) 206

BUILDB (2o3) 0

Main Body o 208

ACREATE (1.0) 209

ALIB2 Library * . . . * * 210

ADELETE (4.0) 212

182

RENNODE (4.4) 213

Main Body * * 214

* . AREGCOMP (3.2). 217

ARSET (3.4) * . * 218

main Body 219

ARETRIEVE (5.0) 221

AL 1B3 Library****** 223

ARSELECT (4.2). o . . * * 225

AMOVE (3.31). 226

AZ4APTRAV (3.3) 227

AUTIL Library 229

GETCELL * * * * * * * * * * 230

NEWBUFF (1.3) 231

*RETCELL (2.3) . . *. o 232

CRTLSK (2.11). . . 0 234

NODEINS (2.4) o o o o . . . o o o o 235

-. MAPSRCH (2.2) o o o o o o o 236

C)indicate references to DFD number in Appendix B

183

PROGRAM ADANTEST;
•THIS PROG* RIaA TESTS THE ADAM PROCEDURES

* aONST
M'XNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIN = 10; (* MAX NUMM OF DIMENSIONS. *)
-4AXBIT = 16; (* INT LENGTH IN BITS. *)

(* MAXBIT SHOULD ALWAYS BE BIGGER 7W XDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
MAXREG = 8; (* MAX NUMBER OF FLAGGED REGIONS.

TYPE NODEELL = REOD
SPPTR,CDP : INTB3R;
DATA:ARRAY (. 1..2 .) OF INTEGER;

-- END;
NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODECELL;
RMD CT = PEDRD

NL DDM, NLMPE, NWMfDES, N4EV: INTBGE;"" END;

ADA4MAP = REORD
DIRHCT:MAPDlRBT;
[NDE:NDFARRAY;

PFILE = TET;
BITSE = ARRAY (. 1..MAXBIT) OF BOOLEAN;
BITARRAY - ARRAY (. 1..MAXBIT .) OF BITSET;

* DIVEI = ARRAY (. 0..MAXBIT .) OF INTEGE;
PLthLAG = (PACKAUNPACK);
SCHRES = (NOcYNE, INSERT,MATCH) ;
REGDEF = RCR

-LcVAL, HIGHVAL:DIVE2;

S3-S = ARRAY (. 0..MAXDI .) OF DIVE2;
CSARAY = ARRAY . .. 8 .) O CHAR;

VAR MAP:ADA ;
MASK:ARRAY (. 1..MAXBIT .OF INTEER;
PRFILE :PFILE;
PRFLAG: (DISPLAY,)RINTR);
BITFLG,VEFLG:BOL AN; (* DEB FLAGS. *)

THESE ARE THE INERATIVE SUPPORT ROUINES. *)

CEDURE INVAL (PROMPT:C8ARAY;VAR INDEX:IN;E3ER
HIN MAX: INTEGER); EFJ~tAL;(* USES PRMP TO INPUT TOE INDEX. PR0MPT! RECMR UNTIL
INU VAU IS BEIEEN MIN AND MAX. *

PF4CEUR INPDIV(PROMPT:CSARAY;VAR DAVE:DIVEC;

W*UES PRMP O INPUT THI DM 1T!E VECTOR DATWEC,

PROCEDURE OU.IV(DT :DIVBC;NMI INT R;VAR C 'TTE:pt18);

i 184

EXTENAL;
(OUTPUTS THE DIVEI2 TO OFILE. ASSUMES THERE ARE NUi4DIlM

VAID ELEMETS IN THE VECOIVR. *)

THESE ARE THE HIGHEST LEVEL PROCEDURES
FOR MANIPULATING AN ADAM NAP.

ROCEDURE AA(VAR NAP:ADMW;TM:DIVEC) E
AD(* DIS DATA POINTS TO THE AP. USES INTERACTIVE DATA ENY.*)

PROCEDURE ACREATE(VAR NAP:ADA4AP ; SIZE, K,L: INTEGER); EXTENAL;
(EATES AN EMPTY ADA4 MAP IN MHE *-NODE MAP BUFFER

'- ARFA, SETI'ING UP THE DIRELCTY AND FREE S AGE LIST. *)

PCEDURE ADEBUG(VAR -NAP:ADAP); TENL;
(* ALUMS SOME DEBUGGING AIDS TO BE ACTIVATED/EACTIVATED
INTERACTIVELY, AND SOME DEBUGGING MO0. TO BE USE. *)

PROC2EDURE ADELETlE(VAR JMAP :AlP; INDEX: INTEGER); EX'TERNAL;
(* DELETES ALL hE DATA POINTS WITHIN THE SPECIFIED
RETIEAL REGION. *)

PRMMEURE AFIND(VAR NAP :ADAI4A; INDEX: INTB3ER;1I) :REX)EF);
EXNAL;
-* DEFINES A REGION WITHIN THE MAP FOR ALL RETRIEVED

DAMA POINTS. *)

PROCEDURE ARElIEVE (VAR MAP :ADAMMAP; INDEX: INTEXGER;)S : SEDS);
EXTENAL;

(TRANSLATES THE ADPX MAP DATAL POINT OMANIZATION INTO0 A
SEQUENTIAL ORGANIZATION FOR SEDU IAL PRCESSING. *)

185

4 . *t*

INTERACTIVE TOP LEVEL ROUTINES.

PRO)CEDURE EL
(1 PRINTS OUT W IEXL COMND AT THE TOP LEVEM

AMD GIVES THEIR FERCTIONS. *)
BEIN
'RITELN(' AD - AMD DATA MO THE MAP.');
WRITELN ' DEB -- D TE STRT .');
WRITELN(' DE- - DELETE ALL DAMA POINTS WITHIN A');
WPIITELN(' REIGION.');
WRIEN(' FIND - LAG THE NEEDED NODES TO DEFINE');
WRITELN(' A REGION');
WRITELN(' GET - - - - - - RETRIEVE A REGION OF DATA POINTS');
WRITELN(' NIO A SEQUENTIAL DATA PrW. '1);
WRITELN(' HELP ------ PRIMT OUT HEP TBLE.');
WRITELN(' NEW - ----- CREATE A NEW MAP BUFFER.');
,RITELN(' STOP------- STOP PROCESSING.');

0E1D; OF

186

- . -..

PROCEDURE ADAMW)JIT)L (VAR AP :ADAMAP);
CO NTROLS THE USE OF ADAM MAP FUNTIONS INTERACTIVELY.

VAR ONWI):PACXRD ARRAY (. LA. C) F CHAR;
RD :RiXGEF;
REINI,K,SIZE:INEXER;
DATVB2:DIVB;
SDS:SEQDS;

BEGIN (*ADACONTRL *

COMAND~:=l I
WHILE (OMMIX> 'Sfl0P' DO

BiEGIN CYCLE UNI TOLD TO STP
WRITE(ADCMAN= ');

IF (CONDI='AID ') fTHEN
BEG3IN (*AM A DATPA POINT. *
INPDIV('DATA PT ',DAIVEX,tAP. DIRCT NMDI);

INPU pjIT.p**
IF (DATVEJ(.1.)>=O) WEN~

BBKIN (*GET THE POINT INDEX. *
INVAL(PT INDEX ',DA!13(. .0.) 1,mAXIN);
AAD(APDATd'JB); AM TDO M1 AP.*

IF END; END; ,
. *

I COMMwi='DEB 7E
ADEBG(AP); DBGAMP

IF (COM4AND='DEL)THEN
BEGIN (* DELETE A REG3ION4.
INVAL('RX IND ',REGIND,1,MAXRBG);

ADLETE(MAP,RBIND);

IF (CONWIN='FIND') THEN
BEG3IN (~DEFINE A REG~ION. *
INVAL(RB3 IMD ',RX3IN,1,MAXRER3);
INPDIV('RBG MIN ',RD.LJOVAL,MAP.DIREP.LUKDIM);
IF (RD.LCWVAL(.1.))>=0 THEN

BEGIN (*ND ABORT.
IN]PDIV(REG MAX ',RD.HIGVAL,MAP.DIREJ2T.NUj4DIM);
IF (RD.HIGHVAL(.1.)>=0) THEN

AFINDMP,RE3IND,RD);
END;

IF (COMMAND-'GT7P' THEN
BEG3IN (*GET1 ALL THE POINTS IN A REGION. *
INVAL('REG IND ',REGIND,O,MAXREX3);
ARIEVE(MPREINDSD);
IFC(SDS (.0, 0.)<-0) 7HR'N

WITELN(PRFILE,
NO DATA POINTS IN TME REGION.')

ELSE BEGIN

187

IaUITEMI(PRFILE,' RL'flUBV DMTA POINTS.');

K :=VRP. DIRECT. NUNDfI;

WHILE (I<=GS(.OO.)) DO

OU'1DIV(DS(.1.) ,K,PRFILE);

ItRITELN(PRFILE);

IF (COMMWI)-'BELPTHEN
HE[P (PR.INT HELP INPO4ATION. *

IF (COMNWI-'EW THN
BEG3IN
INV'AL('KJF SIZE' ,SIZE,5O,NXIES);
INVAL('gM DIM 'tK,1,YAXD3h);
INVAL('IDI LEV ',L,3,NAXMI);
AREAE(MP,SIZE,K,L); (OR4AT NEW MP.*)

IF (CXNIAND=' SfOP') THEN4 WRITELNV(STOP R10UESTED.');
END;

EN;C DMOTO

1e8

PIEC-DUR INITIALIZE;
(~INITIALIZES SYSTM VARIABLES.*

VAR I, MVAL: ISTM~;
BHGIN
I4VAL:=1 3

WHIM BIT MASKS. *M

MAS(. .)mWAL;

-. IF (Ic4AXBIT) 7ME~ (PREVENJT OEF
MVAL :MVAL*2;

PRFLAG:-ISPLAY;
BITFLG:-PALSE;
VBCFLG:-4ALSE;
END; OF ~ INITIALIZE *

10

B~3IN (*ADAMTEST *
PECaITE(PEWILE);

' - INITIALIZE;
1fITELN(' ADAmMST ROT7'INE. ');

II~ITEL&N END CF ADA4M S.')
END.

PROGRA ADAKIO;
TH(* IS PROGRAM TESTS THE ADAM PROCEDURES *)

-DES = 50; (* SHALL BUFFER FOR NOW. *)
MAXDIM = 10; (* X NEMER OF DIMENSIONS. *
MAXBIT = 16; (* INTEER LENGTH IN BITS. *

(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A REIRIEVAL. *)

TYPE NODBCELL = RFdRD
SPPTR, CDPTR: ITBER;
DATA:ARRAY (. 1..2 .) OF INTEGER;
END;

NDARRAY = ARRAY (. 0..MAXNODES .) OF NODEXELL;
hMAPDIRBCT = REORDK NUMDfl4, NLNRBG, NUMMES, NJUMLEV: INTEGER;

END;
ADAt" = RECRD

DIRBCT :MDIRBCT;
NDE: NODEARRAY;
END;

PFILE = TEXT;
BITSET = ARRAY (. I..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. 1..MAXBIT .) OF BITSEr;
DIVB = ARRAY (. 0..MAXBIT .)OF INTEGER;
PUFLAG = (PACKUNPACK);
SCHRES = (NO'DONE,INSERT,MATCf);
RSMEF = REKMRD

IOWVAL, HIGHVAL:DIVBC;
END;

SEQIS = ARRAY (. 0..MAXDI .) OF DIVX;
CARAY = ARRAY (. 1..8 .) OF OAR;

VAR MRP:ADAMMAP;
MASK:ARRAY (. 1..MAXBIT) OF INTEGER;
PRFILE:PFILE;
PRFLAG: (DISPLAY, PRINTER);
BITFLGVEaG:WBOLEAN; (* DEBUG FLAGS. *)

191

PF40CMDUR OUTBITS (OFIL : PFItLE; BIT:BITSE';NTIN: IIIhY3H;
(* OTPUTSl NUM' BIWTS1o OFILE. *

VAR I: INTWEI;
BEG3IN
I :=1;
WHILE(I<=NUM) DO

WRITE(OFILE,' ',BITS(.I.):1);

END;
WITELN(OFILE);
END; C* OYlomrrS *

192

PF~aEDURE OIIIVHL (VAR VB2 :DIVBC);
(*OUTjPUTS ALL OF 'VJBX ~FOR DEBUG3F'4 *

VAR I:INTEJ3ER;
BEG3IN

WHILE (I<4@XBIT) DO
* BEGIN (*OUTPUT IN HEX. *

IF ((I+1)MOD 9 =0) THENi WH.ITELN(PRFILE);
WRITE (PtFUL,' I ,VBC(.I.):4 HEX);

END;
WRITEL PRFILE);

WHILE (I<4=XBIT) DO
BEG3IN (*OUTPUT IN INTEER.
IF ((I+1) ZUM 9 =0) THE~N WRITELN(PRFILE);
WRITE(PRFILE,' ',VEX2(.I.):6);

END;
WRITEUL (PRFILE);
EN; (*OF O(IIVB2 *

193

oi .. . -. % . ° .- . . °... . °-------- - . . ., •-.-
777777707- 7

(* TEACTIVE I/O ROUTL1ES. *)

ERCDM INVAL(PR :PT:C8ARAY;VAR VALUE:INTB3E;
MIN,MAX: flGER);
1 USES PROMPT TO INPUT A VALUE FROM THE USER.
IGNORES ALL VALUES OUTSIDE THE INTERVAL MIN TO MAX. *)

BEGIN
VALUE:=MIN-1;
WHILE (VALUEc-J4I) OR (MX<VALUE) DO

BEGIN 1" LOOP UIL VALID. "1
WRITE(' INPUT ',P HPT,' >'1);
READLN(VALUE);

E END;{: END;

194

__ _ _ _ _ - - - - -..

s A s t . . t .. t±.. ..". ~..

PROCiDUR OUIIV(DATVB32:DIVBJZ;K:UINThXB=;VAR (FILE:PWILE);
* (* O~WUTSI K ELMMM OF DATVBZ M~ PILE. *

VAR ITEMi;
EJJSCALE,RVALUE:REAL;

BEX3IN
RVALUE: MXINT+1. 0;
UNSICALE:=1. O/RVALUE;

WiILE(I<4-!) DO
BEGIN
IF (I MOD 5 = 0) TMIE ITEM1 (OFIEE);
RVALUE :=DATV3Z(.I.) *IISCALE;
IIRITE(OFILE,' ',RVALUE:7:5);
I :=I+1;

195

PROCEDURE INPDIV(PRCMPT:C8ARAY;VAR DATVEJ:DIVEC;K:INTEGER);
.::" . (* INTERACTIVELY INPTS 'THE DATA IT4 VFECKOR. *)

VAR INDEX, IDVAL: INTEER;
DATAVALUE, F.4AXI: REAL;

BBaINi;' NAXINT:-MXN;

WRITELN(VE TOR INPUT FOR' ,PROMPT);
WRITELN(INPUT 'HE ',K:2,' DIMENSIONAL DATA ITEM VE R.');
WRITELN(USE A VALUE <0 TO ABORT INPUT SEQUENCE. ');

!! IR.ITELN(l ALL INPUTS SHOULD BE');
WU- :JTELN (I0<= X(I) <i1);

L-:.INDEX:=1;
WHILE (IE X<=K) DO

BEGIN (* ONE FOR EACH DIMENSION. *)
WRITE(' X(',INDEX:2,') = ');

I.' READLN(DATAVALUE);
IF (DATAVALUE>= 0.0) THEN

BEXGIN NO ABORT. *)
IF (DATAVALUE>-- 1.0) THEN

IDVAL-= : XINT (* LGT INTEER *)

I:NAL: -RUNC ((EMAXINT+. 0) *DATAVALUE);
NOW IN [0 , MAXINT) RAME. *)

DATVBC(. INDEX .):=IDYAL;
INDEX :=INDEK+1;

BE3IN (* ABORT INPUT SEQUENCE. *)
INDEX:=INDEX+10; (* ESCAPE LOOP *)
DATVEJD(. 1 .):= -1; (* INDICATE BAD VALUE. *)'" END;

END;
IF (VECFLG) MEN O7TVEC(DAVBE);
END; (* OF INPDIV *)

BEGIN (* AJDATEST *)
"- (*$NULLBODY*)

END.

196

4J E':)

:->~HI PRORA Tms cw4 TS THE ADAM PF40CEDURES *

coST
1RXNODES = 50; SM~LL BUFFER FOR NOW.
biXDmm = 10; MAW~X NUMBER OF DIM4ENSIONS. *
z.AXBrr - 16; (*INTEG3ER LENGTH IN BITS. *

(* ?XBIT SHOULD ALWAYS BE BIGGER THAN hIAXDIt4.

NME XI =100; NM DAMA ITEMS IN A RETRIEV/AL. *

TYE ODEXELL = RE OD
SPPI!R, ODPIR: INTEX3ER;
DATA:ARRAY (. 1-.2 .) OF INTEGER;

t()D&'RRAY = ARRAY (. 0. .MAXNOWES .) OF NDEXCELL;
MAPDIREZ2T = REKX)RD

NUMDIM4, NUNRE1G, NUMNODES, NEi&ABV: INTMGER;
END;

ADAMMAP = RECORD
DIRER2T:iAPDIREJ2T;
NDDE :NOEARRAY;
END;

PFILE = TEXT;
BITSET - ARRAY (. 1..IAXBIT .)OF BOOLEAN;
BI!ARRAY = ARRAY (. 1..MAXBI .) OF BITSET;
DIE - ARRAY (. 0..MAXBIT .) OF INTEGER;
PUFLAG = (PAO(, NPACK);
SCHRES - (NOTDONE, INSERT ,NATC~H);
REXDEF - RCOD

UMWVAL, HIGHVAL :DIVEX2;
END;

SEODS - ARRAY (. .. MAXDI .)OF DIVEXC;
C8ARAY - ARRAY (.1-8 .) OF CHIAR;

VAR MP:ADMAP;
!4ASK:ARRAY (. 1..MAXBIT .) OF INTEGER;
PRFILE : WILE;
PRFLAG: (DISPLAY,PRIN'rER);
BITFLG,VEZFLG:BOOLEAN; (*DEBUG FLAGS. *

197

PaOcEXUR ADEBUG3(VAR MAP :ADAWA);
(AIZOOU SON4 DEKWIG AIMS M1 BE ATVTDDAEAE

I ~ ~ -. INTflRACTDVLY, AND SOME DEB=G) TOOLS M0 BE USED. *

VAR C)4D: PACKED ARRAY . .4 .)OF CHAR;

198

PROEDRE PRTNOIDE(VAR OFILE:PFILEMOaDE:MD3ELL);
(PRINTS OUT TIHE ONtTENTS OF A SINGLE NOEDE. *

WRlIXEOFIl1 E,' S/Pm ',NKVE.SPP R:6);

ITE(OFIEE,' DM-A ',kOE.DAT1A(. 1 JA: HEX);
WRIT(CFIt,' ',NODE.DRTA(. 2 JA: HEX);
WRITELN(OFILE);
D; (~OF PRI'NcDE *

199

PROCEDURE OU'IDIR (VAR TILE: PFILE;VAR MAP:ADMMAP);
~OUTPUTS~ 7HE MAP DIR]XIORY TO OFILE. *

BEGIN
WITH NAP.DIRECT DO

BB3GIN
* IU1LN ((FILE,' INAP DIRECTORY. 1);

WRITELN(cILE,' SIZE =',NU14ND,' NODES.');

NRITELN(OFILE,' ',N~lNDI,' DIMNSIONS');
WRTL(OFILE,' ',NLE",I ' LEVELS');

ENiD; O~ F OUJIDIR *

200

PRCEDURE HE[P
PRINTS O"M LOT AL D M. *)

BEGIN
WITMrCN(BITS --- - SII BIT O(UIPT FLAG. ');

•:7 R"ln(' DIR ---- OJrPUT MAP DIRBMM.');
"tRIN (' DISP - -I-E- SWITMS OUTPUT 1 DISPLAY. ');
WITEUA W - - - PRINTS THE MA.I);
WRITE 0L' HE P --- - DISPLAYS THIS Z E. ');
iIT (LIST - - -T- WITCES O TO PRINM. ');
tERITEW.(' PAGE ---- OUnTUTS A PAGE ON PRINT FILE. ');
WITELN(' STOP - - -- FXIT DE~(J MODE.');

, WRITELN(V - - - - SWIIVM VECTOR OUTPUT FLAG.');
END; OF M P

!.20 .20

- ...o~. -. -

PROEUMVE DUKWIAT(VAR O'ILE:WILE;VAR MAP :ADAI44AP);
(PRINTS OUTP IlE MAP TO OFILE. *

VAR ST~ART, STOP, INDEX: INTEGER;

MGIN

WRITE(fINDEX OF SUARTfl3 NODE=
RFADIMSTART);

READN(STOP);
IF (START<) THENZ' STAMr:=0;
IF (STOP>MAP. DIRST. ?IMNDES) THEN SlOP :.AP. DIRKCT. NU*DES;
IF (ST0P<START) T~HN SrOP:-TART;
WRITEL(0FILE, I D(MP OF ADM MP.');

INDEX :ieTARIT;
WHILE (fINDEX<=S OP) DO

BBGIN (* CZNE NODE AT A TIME. *
WRITECFILE,' I'INDEX:5,1)
PRTNODE (O'ILEMAP. NODE(. INDEX J));
INDEK:-INDEX+1;

END; OF ~ DEMPDAT *

20

120

BEIN(JDHE *

* ~ ~ WILE (OIDO>'S OP') DOl

WREO EBGCOIN)

READN(CND);
IF (cMD'BIS') THEN BITFLG:=tN)T BITFIW;
IF (CM-DI~ ') THEN

IF (PRFLGOISPIAY) THEN OU'flIR(OU2PKY,MAP)
ELEOUThIR (PRFIEE,MAP);

IF (CM)-'DISP') THEN PRFLAG : DISPLAY;
(DEW M0 SCREEN. *

IF (cMD-' ItW') THEN
IF (PRFLGOISPAY) THEN

DMI4DATE (Ot7IUT,MAP)
ELEDIUM&DAT (PRFILE,MAP);

IF (CID-'HELP') THEN HK P;
IF (CMI'LIST') THEN PRFLAG:=PRINTER;

* (* DUMP M0 PRINTER. *
IF (CMD'PAGE') THEN

IF (PRFLAG=DISPLAY) THEN PAGE(OUTPUTr)
ELSE PAGE (PRFILE);

IF (CMD'SMIP) THEN WRITEL.N(S10PPI~z');
IF (CMD'VCS') THEN VEF:=N VEXCFLG;
END;

WRITELN END OF DEHXr.')
END; (*OF DEBCEG *)

EBIN (~ADAWIEST *
(*$NULLBOSDY*)
END.

203

-7.2

:p m J , .,m - m . ,_ . . : .o , . . ' ., '-. -'. .- . . " " .
" °' "

L
POGA1 AAMIB

THIS DUM14IED P~RM OTrAINS THE ADAM, PROCEDURES *

MAXNO) = 50; SAll BUFFER FOR NOW.
MAXDD4 = 10; (* UMX ER OF DIMENSIONS. *
MAXBIT = 16; (* INTEER LETH IN BITS. *)

(, MXBIT SHOULD ALMAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MX DATA ITEMS IN A RETRIEVAL. *)

TYPE I-DE2ELL RECORD
SPPIR, DPTR: INTBER;
DATA:ARRAY (. 1..2 .) OF INTEGER;
END;

,NODEARRAY = ARRAY (. 0..MAXNODES .) OF NOIDBELL;
MAPDIRS2T = REORD

Nt-" l4, H, MI NODES, NENLEV: ;INTXER;
END;

ADAMMAP = REORD
DIT:APDIRBC2T;
NODE: DDEARRAY;
END;

PFILE = TEXT;
BITSE = ARRAY (. 1..MAXBIT .) OF BOOLEAN;
B1TARRAY = ARRAY (. i..MAXBIT .) OF BITSET;
DIVHC = ARRAY (. 0..MAXBIT .) OF ITEGER;
PUFLAG = (PACK,UNPACK);
SCHRES = (NOTDONE,INSERT,MATICH);
.RBGDEF= RFORD

"IOWVAL, HIGHVAL: DIVEC;
"-:]EID;

SEU!S = ARRAY (. 0..MAXDI .) OF DIVEC;
C8ARAY = ARRAY (. 1..8 .) OF CHAR;

VAR MAP:ADAM4AP;
MASK:ARRAY (. 1..MAXBIT .) OF INTEGER;
PRFILE:PFILE;
PRFLAG: (DISPLAY, PRINTER);
BITFLG, VFLG:BOOLEAN; (* DEB FLAGS. *)

i/O ROu .

PREDURE OUTBITS(OFILE:PJILE;BITS:BITSEr;K: INTEGER);

(* OU'TUS K BITS FROM THE BITSET TO OFILE. *)

PROCEDURE Or1VJE(DTVB : DIVEX2) ; ETERNAL;
(* 0IUJS1l DATVBI 10 PRFILE IN HEX AND INTEGER. *)

FREE NODE MANIPUIATION ROUTINES

PROCEDURE GEELL(VAR NODE:NDEARRAY;VAR NEN:IRTEGER);

EXENAL;

204

w + , r -+, - V' . . . -t - . - . . - . + , - : - -" • " +' L "- " + " -'

r,

"RETURNS I INDEX OF THE NEXT FREE NODE AFTER
l rREMEVING IT FO TE FREE LIST.

Nq=0 ON RETUR
MEANS "OUT OF FREE STORAGE." *)

-PROCEDURE NEWBUFF(VAR NODE:NODEARRAY;M: INTE3ER); EXTERNAL;
. (* INITIALIZES A DATA BUFFER OF LENGTH M IN THE NODE

ARRAY INTO A FREE STORAGE LIST.
THIS SETS UP NODE(0) AS THE HEAD OF THE LIST

OF FREE NODES.
NODE (0). SPPTR- POINTER TO NEXT FREE NODE.
NODE(0)(C-PTR- POINTER TO LAST FREE NODE.
NODE(0). DATA(1)--NUMIBER OF NODES. *)

PROCEDURE REVELL (VAR NODE:NODEARRAY;CLD:INTEGER); EXTERlAL;
-(* URNS AN OLD NODE TO THE FREE STORAGE LIST
AFTER iBCKIG KR DETECTABLE ERRORS. *)

BIT MANIPULATION UTILITIES.

PROCXDURE BITPU(VAR BITS:BITSET;VAR INTWD: IW1EER;DIR:PUFLAG);

M* KEYS ONI DIR (PACK OR UtPACK) 70
PACK BITS INTO INTWD, OR
tUNPACK IND INTO BITS. *

PROCEXJRE CRTLSC(VAR LC"EVC:DIVEC;DA7 V=:DIVBC;K:INTEXER);
EXRNAL;

CR(* EATE TE LEVEL SEARH KEYS FROM THE DATA ITEM VEX OR,
DTVEC. THE ITH LEVEL SEARCH KEY CONSISTS OF THE ITH MSB
OF EAC OF THE ELEMENTS OF DATVEC. HERE ARE K ELEMENTS
IN DATVEX, AND MAXBIT ELE ENTS IN LSKVEC. "

MAP MANIPULATION UTILITIES.

Pi0CEDUE NDDEINS(VAR MAP:ADA NAP; N iNEPARE,LAS ONE,
NEX'NE: INT ER); EXTERNAL;
(* INSERTS THE NODE AT NEDNE BEDOE LASIONE AND NEXIONE,
COMPENSATING IF EITHER IS A PARENT. *)

PEDURE MAPSRCH(VAR LSFARCH:SCHRES;VAR PARETf,LASTONE,
NEX 0NE,LWEL: IN THER;VAR MAP:ADAl9 AP;
VAR LS(:DIVEJ2); EXTERNAL;
(* SEARCHES THE MAP IN NODEARRAY FOR THE LEVEL SEARCH
KEYS IN LS. ISFARCH RETURNS INSERT OR MATCH, AND THE
POSITION IS RETURNED IN LEVEL, PARENT, LASTONE, AND
NEXTONE. *)

205

i< . . .- .. ." .-.. .- -, -. ,-',,' , ,- .- , .- , -. . : .. - '-- , , - +. - . ,. _. + .. , +_N. _

MJCIMMR AM (AR MAP :ADAt4AP; DATVC:DIVBC);
(AIS DAMA POINTS TO0 THE MAP. USES INTERACT'IVE DAMA ENTRY.*

VAR LSKVWC:DIVEW;
NEWJNE, PMEN2T, LAS 0NE, NEMINE, BDTTOM~), LEVEL: INTEGER;

NO DE P TRS. *
LSEARCH: SCHRES;

206

PROCED3URE BUTTB (VAR MAP :A[WMMAP ;VAR LEVEL, NEWONE, BOY"TTM:
INTaER~;VAR ISKVBC2:DIVBC);

(BUILDS A BRANCH IN MAP, STARTING AT LEVEL, USING
KEy1S FCom LsKVFJZ, AND EXTENDING TO ML~E "DIRECT. NIMLV"
LEVEL. *

VAR L, INDEX, LASTNODE, NESMNDE: INTEY3ER;

WITH MAP DO
BEG3IN
L:zDIRCT.UMLEV; (*MAX DEPTH OF THIS MAP. *
INDEK :=LEVEL;
GMU1tELL(NODE,NEWNODE);
NEONE :=NENDDE;
IF (NEWONEMO THEN~

NODE(.NEWONE.) .DATPA(. 1 .) :ISKVB(.INDEX.);
WHILE (INDEX<) AND (NEWONEM0 DO

BEGI AMX NODE LEVELS. *
LASTNDE :NEVNODE;
INDEX: =INDEX+1;
GMCDELL (NODE, NEMOJDE);
IF (NEMODEMO THEN1

BEG3IN VAj~~L CELT. *
NDDEINS (MAP, NENNOE,ASTOOE,LASTNODE, 0);

(INSER.TS BELOW IT. *
NODE(.NENDE.). DATA(. 1 .) :=IVE (.INDEX.);

ELSE

IASTNODE :=NEK)NE;
WHILE (LASfTNODE>0) DO

BEG3IN (*RETURN THlE NODES. *
NEMMDE:'NDDE(.LASTNODE.) .CIDPTR;
REDCELL (NOELASTNODE);
IASTNODE : =tN DE;

NEmNENWDB; NUL POINTER. *

Bo WtM:=NEWNODE;

207

BEX3IN (*AAM~*
IF (DATVC(. 1 .)>= 0) THEN

BEIN(* DA.TA VALID. *
CRTLS((IS(VBZ, DA VFB,MAP. DIRFJ2T.NtD4DM);

CR aEATE LEVEL SEARCH KEY(S.
IF (VCFLG) THN O(7IVEY(tSKVBC);
MAPSRCH (ISEAIR2H, PARENT,LASTONE, NEXION,LWVEL,

MAP,LB);
(* SEARCH 1THE MAP FOR INSERT POINT OR
MATCH. *

IF (ISEARCH = INSERr) THIEN
BEX3IN (*BUILD A BRANCH TO INSERT. *
BUUJE (WAP,LEVEL, NEiENE, B~ri'Mt, ISKVBC);
IF (BOT~TMA>) THEN'

BBGIN (~ONLY VALID IF BRANCH IS GOOD. *
NODEINS (MAP, NEWONE, PARmIY,LASTONE, NEXIONE);

(*AND INSERT' IT. *
MAP.NDE(.BrDTTM.).CDPTR:=-DATLVEY(..);

T* HE DATA PONTi VALUE. *

ENDD
EESE
ELSE A~ M~U) E

IMSRITEC (MAPTCH) T THEN)I. **
WRTLO ULCAEDT;PIT

END; CF AADD*

208

77
PROCEDURE ACREATE(VAR MAP:ADAMMAP ;M,K,L: IN7WR);

-(*ETES AN EMPTY ADAM MAP IN TIE M-NODE MAP BUFF AREA,
SETTING UP IHE DIRECTORY AND FREE STORAGE LIST. *)

VAR ROOT: flIER;

BEGIN
WITH MAP DO

BEGIN (* INITIALIZE THE MAP. *)
IF (M<I) THEN NODE(. 0 .).SPPTR:=O
ELSE

BElGIN
NEM3 (NODE,M); (* INITIALIZE ThE FREE NODE LIST.*)
DIRET.NUMDIM:=K; (* NUMBER OF DIMENSIONS. *)
DIRIgT.NUMNODES:=M; (* MAX NUMBER OF NODES. *)
DIREICT.NUMREG:=0; (* NO RIONS INITIALLY. *)
DIREC.NMLEV:=L; (* MAX NUMBER CF LEVELS. *)
GEICUELL(NODE,ROOT); (* GET ROOT NODE. *)
WITH NODE(.ROOT.) DO

BEIGIN
SPPTR:=-1; (* POINTS TO SELF AS PARENT. *)
CDPIR:=0; (* C HILDRE YET. *)
DATA(. I .):=0; (* KEY:=0 *)
DATA(. 2 .):=O; (*NO RIONS *)
END;

END;
END;

(S END; * PF CREATE *)

BEGIN (* ADAMTEST *)
(*$NULLBODY*)

END.

2
4 "

; 209

PROJGRAM ADAMLIB2;
TH IS DUMMIED PROGRAM C0tirAINS THlE ADAM PF40CEDURES

RETRIEVE, FIMI, AND~ DLETE.

MAXNODES -50; (* 4AL BUFFER FIOR NO. ~
WMXIM = 10; (M AX NUMBER~ OF DIMENSIONS. *
MAXBIT =16; INTEGE LENGTH IN BITS. *

(~MAXBT SHOULD AUWAYS BE BIGGER THAN MAXDIM. *
MAXDI =100; *NAX DATA ITEMS IN A RETRIIEVAL. *
bNaXRdm = 8; M* AX NUMBER OF FLAGGED REGIONS. *

TYPE NODEBELL = RECOlRD
SPPTh,CDP R: INTEGM;
DATA:ARRAY (. 1-.2 .) OF INTEGER;

NDARRAY = ARRAY (. 0. .MAXIDIS .)OF NODBELL;
MAPDIRHCT = RUMR

NUMDIM, NUMREG, NUMNDES, ,NtKLV: INTEXER;

ADAMMAP = RlX)ORD
DIREY2T:MAPDIRBZT;
NDDE : NDEARRAY;

POSITION - RECORD
PARENI',CWRRENT,LAS NE, NEX DNE,REX3ION: INTBGERt;

NAPPOS = ARRAY (.1..MAXBIT .)OF POSITION;
WFILE = TEXT;
BITSET = ARRAY (. ..NAXBIT .)OF BOOLEAN;
BITARRAY = ARRAY (. 1..MAXBIT .) OF BITSE];

DVC= ARRAY (. 0..MAXBIT .)OF INITEGER;
PUFLAG =(PACK,LINPACK);

SCHRES (NOTDONE, INSERT ,NATCH);
REGOOlND = (INSIDE,OVERLAP,OUTSIIDE,NKNON);
MAPSTAT = (CUMY, ENDLEV,TERM, EMPTY~,ATTOP ,ATBYr);
MAPOPER = (UP, DOMN,ACROSS ,5'LP,OXMPARE);
TRAVRES = (IOP ,LEAF, NEWNODE,OW400DE, NEXT);
REGDEF = RECRD

LOWUAL, HIGHVAL :DIVEC;
ENJD;

SEQDS = ARRAY (. ..NAMDI .) OF DIVEX2;
C8ARAY = ARRAY l. ..8 .) OF CHAR;

VAR MAP:ADAMMAP;

Z4ASK:ARRAY (. 1..MAXBIT .) OF IN1TEGER;
PRFILE: PFILE;
PRELAG: (DISPLAY, PRINTER);
BITFLG ,VECFLG :BOOLEAN; (DEBUG FLAGS.*

I/0 OUTYINES.

PROCEDURE OUThf'S (OFILE: PFILE;BrrIS: BITSEI';K: nTE3rM);
EXTENAL;

210

O(* OUQIPS K BITS FROM THE BITSET TO OFILE. *)

FREE NODE MANIPULATION ROUTINES

PROCEDURE RETCELL(VAR NODE: NODEARRAY;pOLD: INTEGER); EXTERNAL;
(* RETURNS AN OLD NODE 10 THE FREE STORAGE LIST
AFTR CHECKINGOR DETETABL E ORS *

BIT MANIPULATION UTILITIES.

PREDURE BITPU(VAR BITS:BITSET;VAR INTWD: INTBER;DIR:PUFLAG);
EXIRNAL;

(* KEYS ON DIR (PACK OR UNPACK) TO
PACK BITS INTO INTWD, OR
UNPACK INWD IN'T) BITS. *)

MAP COM~PARISON ROUTrINES.

ROCEDURE ARSELECT(REXFLD,REGIND:Ifl3R ;VAR COND.REGCOND);
.: EXTERN AL;

(* EXTRACTS THE CONDITION OF THE REGION FLAGS FOR THE
REGIND REGION, USING THE REGION FLAGS IN REGFLD. RETURNS
THE CONITION OF IHE FLAGS IN CIOD.
THE REGION FLAGS ARE TWO BITS, AND ARE INTRPRETED AS
FOLLCMS:

00-UNKNOWNi @ 01--OUTSIDE

0 l 10-INSIDE
11 -OERLAP

IF THE RE3ION INDEX IS ILLEAL THEN THE REUR4N IS ALWAYS
"INSIDE". *)

MAP MANIPULATION UTILITIES.

PROCEDURE AMAPTRAV(VAR MAP:ADAMMAP;VAR POS:MAPPOS;

VAR LEVEL:INTGER;OPER:MAPOPER;VAR RESULT:TRAVRES;
VAR PRFILE:PFILE);
EXTER~NAL;
(* TRAVERSES THE ADAM MAP ONE NODE AT A TIME IN
THE DIRECTIONS INDICATED BY OPER. KEPS TRACK OF THE
POSITION IN POS AND LEVEL, AND RETURNS THE RESULTING NODE
TYPE AS FOLLOWS:

OP -- DONE, ERROR OR NOT
LEAF- REACHED A LEAF
NENNODE-- NEW NODE- OLD LEVEL, OR

NEW NODE- NEW LEVEL
-' OWDE- OLD NODE- OLD LEVEL *)

211

. .' . --. -

PROCEDURE ADELEJEIE(AR MAP :ADAl44AP; INDEK: INTEX3ER);
(DELETES THIE DATA POINTS~ IN THE FIND REGION INDICATEBD BY

REXGIND IN~ TH MAP. *)
TYPE RENRES = (IAST,N~JrLAST,YES,ND);
VAR RESULT :TRAVRES;

OPER~:MAPPR;
REMI:RERES;
OND :RBGCND;

N~MHPIN,LEVEL: INTER;
OS :MAPPOS;

212

PROCEDURE REMNNDE(VAR MAP:ADAMMAP;VAR POSIT:POSITION;
VAR REMLG :REMRES);
(* REMOVES A SINGLE NODE FROM THE MAP. ITS LOCATION IS IN
POSIT, WHICH IS UPDATED TO THIE NEXT CEL. HER V'"NODE IS RLUlE TO FREE STORAGE

.. . BEGIN
WITH POSIT DO

F BEGIN
POIb l: =URRENT;
IF (PARENT<IASTONE) T

MAP. NODE(.LASTINE.). SPPTR: =NEDCONE
ELSE IINEXIONE<0) E MAP. NODE(.PARENT.).CDPTR:=O

•." ELSE MAP. NODE(. PARENT.).CDPTR:=NEXTONE;
IF (NEXTONE<O) THEN RE16G:=LAST

SELSE BEGIN
REMFLG :=N0TLAST;
CURRENT: NEXIDNE;
NEXIONE :-P. NODE(. CURRENT.). SPPTR;"" END;

SRETCELL (MAP. NODE, POINT);
END; C" (F RENEDE "1

213

............................. +

BEGIN (*ADEEEE*
LEVEL:=1;
WITHi FlS(.LEVEE.) DO

BEGIN
CURRENT:=l;
PARNT:=1;
NNE:=P.NODE(.CRRE2NT.).SPPTR;

* LASTIONE:-1;
REGION :=INI)EX;
NDEG :=REGI04;
END;

RESULT: 4NEWNDE;
WHiILE (RESULT<> P) DO

BEGIN
WITHi POS(.LEVEL.) DO

BEGIN
IF (OPER=DOM4) AND (RESULT<>NEXT) THEN

REIGION :=EWREIG;
CASE RESULT OF

NEiNDDE :BEGIN
RESULT:-NEXT;
ARSELE(AP.NDDE(.CRRE4T.).DASTA(.2.),

IF (COtIOUSIDE) THEN CP:=ACRSS
EWSE BEGIN (1TAVRSE THE SUBTR1EE. *

IF (COND=INIDE) THEN4 NERBG:=O
ELEN8%=E:=REGION;

OPER :=ON;

NEXT: (*PERFRM NEXT MOJVE. *
ANAP RAV(WA, OS ,LEVEL,OPER, RESULT, PRFILE);

OLDNODE: (* MOVING UP, REVISITED. *
4. IF (wAP.NwE8(.CRRENT.).CPTR=O) THEN~

REMFLG:=YES (* UNUSED, REMOVJE IT. *
ELS BEGIN US ED, MOVVE ON. *

RES:4NEX;
CPER : -ACRSS;

LFAF:REMFLG:-YES; (*LEAF INSIDE, REMOVE IT. *
mmD;

IF (RENFLG'YES) TIHEN
BEGIN REMOVE THE CURRENT NODE. *
REMNOE(MAP, FOS (.LEVEL.) ,RE4FLG);
IF (REMdFlG-tAST) TEN

BEIN (*NOMOE AT LOWER LEVEL.*
LEVEL: -LEVEL#-i;
RESULT: -CLDODE;
NEW9REG:-FO6(.LEVEL.).REGI0N;

ELSE RESULT: 4S34NDDE;

214

,-x ,-, , . "- ,: ''--- / - . i- , : :' " . • - - . -' . -" . - -

END; O AESTE *)

215

-* - -,.-o

PRCEDURE AFfI) (VAR.)AP:ADAMAP; INDEK: INTEGER;
VAR RD:REH)EF);

(FINDS A REGION IN THE ADAM MAP AND) FLAGS THE SUBTREES
AS INSIDE, OUTSIDE, OR OM1EULPING THE REGIN. *)

WA TRAME: BITARtRAY; (*OLEL'IS THE TRACE BIT PAT1'EM~S
I,K,LEVEL,CZERO, VALUJE: INTEGER;
PS:hppOS;
RESULT: TRAVRES;
CPERMA:PER;
WOND:REG0JND;
ILAG:OLAN;

216

PROEDIURE ARNMC~4P (KEYFLD,K,LEVEL: ITEGERt;
VAR TRACE :BITARtRAY ;VAR RD :REKEF ;VAR WOND :REYJX0ND);
(* 0D4PARES A RECTANGULAR SEARCH REGION AND A NODE

REGION TO0 DETERMINE TH~EIR INTER~SEC2TION CONDITION.
THE RESULTS ARE AS E0QLLC5S:

OUTS~IDE - - - NODE REGION IS OUTSIDE SEARC2H
INSIDE - - -NODE REGION IS ENTIRELY INSIDE
aVERLAP - - - NODE AND SEARCH REG3IONS OVERLAP

* BUT THE NODE IS NOT ENTIRELY
INSIDE THE SEARCH

UNNW - - -NO COPARISON HAS BEEN DONE. *
VAR I, SIZE,NRILONNRHIGH,RLC0W,RHIGH, CVALUE:IE3E;

KEY: BITSET;

BEG3IN
IF (LEVIEL>1) THEN SIZE: =MSK (.MAXBIT-LEVEL+1.)

ELESIZE:-O;I TENPiFAREIONLDUTS7O FIND REG3ION',

I :=1;E1)

TPU(ThAKE(.1. PAC);VLEPc)

COND:= ND;

WHILEN (*-K DO JPRM)IC~RITRA
BB3LMIT (* CHEACKON *)H DMIN

NRHE(IGH CVLUE-i=[)+SAXIE; 1.

END;

BEGI=RLNAL SE.UPR1N.LWR)NERA

I NRIGKR[:)- (HIH<ILLN) hE

ELEI NRGH I<RVLUE-I) +(RIGH IHGH T

END;

IF (VCFLG) T H WRTELN (PRFILE L0,RHG~CWRG)
IFD (NHtH' gjW Ow.'w R (HG<R)TE

COD:OUSIE(*MUUAL EC1SIE

PROCEDURE ARSEP (VAR REGFLD: INT33GER;Rl@GIND: INTS3E1R;

SET171S THIE BITS MtR ThE REGION INDICATION IN THE
PROPER LOCATIION FOR ThE REG3ION INDEX IN THE REGION
FIELD. UME REG3ION FLAWS ARE AS FOLUMQS:

OO--UNK~NW
O1--OUT1SIDE
10--INSDE

11-- OVRLAP.
PEFRMS UN~ION WITH PREVIOUSLY SELECTED PORTIONS OF THE
REGION.

VAR REXGION :BITSFEr;
BITOC:INTEGBER;

BEGIN
IF (RBGIND>=1) AND (REGIND<=MAXRB3) THEN~

BEGIN
BITLOC :=(REGIND-1)*2+1;
BITPU(RX3ION ,REX3FLD, UN~PAK);
RHXION (.BITLOC.) := (COtI)=INSIDE) OR~ (COND-(YVFRLA) (1R

REG3ION (. BrTlOC+1.):= (COND=OUTSIDE) OR (COND=OVERLAP);
IF (BITFLG) 7HFN

BEGIN
WRITELN(PRFILE,'I NEW REGION FLAG FIELD.);
OUTBITS (PRFILE, REGION ,MAXBIT);
EN~D;

BITPU(REGION,REGFLD, PACK);

END; OF Q ARSEr *

218

BEGIN (*FIND *
CZERO:=O;
K :-MP. DIRECT. NIJ4DIM;

WHILE (I<mfPXBIT) DO
BEGIN (*INIT TR1ACE TO 0. *
BITPUf(RACE(.I.) ,CZERO,UNPACK);

LEVEL :=1;
WITHi POS(.LEVEL.) DO

BEG3IN (*SET POSITION CPO T ~~.
* CURRENT:=1;

PARENT:=1;
NEX'OE:4MP. NODE (.CRRENT.) .SPPTR;
LAS ONE :1;

LEAG :=EALSE;
RESULT :=NEINDDE;
WHILE (RESULTO IOP) DO

BEGIN TR AVERSE THE TRPEE AS NEEDED. *
'WITH POS(.LEVEL.) DO

BEGIN (*BASE POSITION ON THE CURRENT LEVEL
FOR EACH PASS IN THIS LOP. *

CASE RESULT OF
NENDDEBEGIN (* COMPARE CURREN1T NODE. *

ARBOCP (M4AP. NOEW.OCURRENT.). .DA. .1.)
K,LEEL,TACE,RD,OI);

ARSEr(MP.INJDE(.CRRENT.) .DT(.2.),
INDEX,OOND);

IF MIG THEN4 OPER:ARSS
ELSE IF (COND COERLA) THlEN OPER:=DOW
ELSE OPER~:-AROSS;
RESULT: =NEXT;

NEXT:BEXIN (* MOVE TO NEXT NDE. *

LFLAG :=FAISE;
AMPTAV(AP, POS,LEVEL,OPER,RESULT, PRFILE);
IF (RESULTCDNODE) THEN

BEGIN (*RET[MUNED UP TO NODE
ALREADY VISITED.*

I :=1;
WHILE (I<=K) DO

BEGIN (*CLEAR OUT LAST
LEVEL OF TRACE. *

TR~ACE(. I,LEVEL+1.) :=FALSE;
I :1+1;
END;

CER~:-ACSS;
RESULT: 44EXT;
END;

LEAF: DEJIN
IF (BITFLOG) THEN

219

- -..........

WRITE 1N (PRFILE,' TRACE VALUES');

LU WHILE (I<=K) DO0
BBGIN
BITPU (TRACE(. I1.) VALUE,

PACK);
WRITE(PRFILE,

(VALUE/(NAXINT+1.0)) :7:5,

RI:1+1; I);

IFLAG :--IRE;
RESUJLT: =NEWNODE;

END; OF AFfI*

220

PROCEDURE AREiRtEVEM(AR MAP :ADAMMAP; INDEX: INTEX3ER;
VAR SSSED);

(~REIEME THE REGION DEFINED BY INDEX ITO THE
SEQUENiTIAL DATA SET SJ)S

VAR RESULT: RAVRES;
* ~US :MAPgJS;

KEY:BITSET;
WDUkr,I,K,LASTRB,LEVEL,NEI'iRE: INB3E;
TR1AME:BITARRAY;
OPR:MAPOPFR;
CODRGOD

BEGIN
-. LEVEL:=1;

K :4MAP. DIREC2T. IUNDD4;
COUT:=O;
WITH FOS(.LEVEL.) DO

BEG3IN
CURREN~T:=1;

* - PARENT:=1;
NEXONE:=MP.NDDE(.CURRENT.).SPPTR;
LASDNE : 1;
REX3ION :=INDEX;
NEWREIG :=RE]GION;

OPER:=DON;
RFSULT:=NEWNODE;
WHILE (RESULT<>'IP) DO

BEGIN (*TRAVERSE ENTIRE TREE. *
WITH POS(.LEVEL.) DO

BBGIN
IF (OPER7=DOMN) AND~ (RESULT<>NEKT) THEN~

CASE RESULT OF
NEWNODE: BEG3IN COMAR CURN NODE.

RESULT: -NEXT;
ARSELBCT(t.APNDDE(.CRRENT.).DATA(.2.),

REJIO,CONtI);
IF (COND=INSIDE) OR

(CZ:IDmzOVER) THjEN
BEGIN *TRALVERSE THE~ SJBpR *)
BITPU(KEY,

MAP. NODE(.CJRRENT.) .DT(. 1.),

WHILE (I<-K) DO
BEGIN (*SAVE MhE TRACE

BITS. *
TRACE(. 1, LEVEL.)

KEY (.MAXBIT-I+1.);
I :=I+1;

IF (CIND-INSIDE) THEN NEWREX3:=O
ELSE NNAG: -REGION;

221

OPER :-DON;

ELSE OPR:-k2RSS; (*IGNORE SUBTREE. *

NEKCT:BEXGIN PERPUR NEX(T MOVE.
AMAP 1RAV(MAP, !V6,LEVEL,OPER,RESULT, PRFILE);
IF (RESILTEODE) THEN~

BEXIN (* CAME UP M0 NODE ALREADY

RESUJLT :=NEXT;
OPER :-ARSS;
END;

LEAP: BBfGI (SALE TRACES FOR DATA
ITEM*

IF (COUkNTOMAXI) THEN COUNTP: CDtN+1;

WAEILE (1<=K) DO
BEM3N GET THlE TIRACE.

I :=I+1;

RESUM-N:EXT;
OPER : =ACRSS;

EEND;

EN;O RETR IM~E*

MGINADPJ4TEST
(*$NgJjULrLBY*)
END.

222

PROGRA4 ADALIB3;T~ HIS DUMMIED PROGRAM CONTAINS SOME OF THE ADAM

* ~SUPPOiR PROCEDURES *

JMAXNJD&S = 50; SM 3ALL BUFFER FOR NOW'. *
I4AXIM = 10; (*MAX NUMBER~ OF DIMENSIONS. *
MAXEIT = 16; (nMMER LENGTH IN BITS. *

(MXBIT SHOUD ALWAYS BE BIGGER MHAN JMAXfl4 *
bAXDI =100; (*MAX DATA ITEMS IN A RETRIEVAL. *
14A)CRB = 8; (*MAX NUM4BER OF FLAGGED REGIONS. *

TlYPE NODBCELL =RECORD

SPPTRCPTR: INTEE;
DATA:ARRAY (. 1-.2 .) CF INTGE;
END;

NODEARRAY = ARRAY .0. .MAXNODES .)OF NDXEL1L;
MAPDIREC'T = RCR

NM ,NUt4IIME, NUMNWDES,N1UKLEV: INTER;
END;

ADAMMAP = RECZORD
DIRECT :MAPDIRECT;
NIWE : IDEARRAY;
END;

POSITION = RECOlRD
PAREN',C WREW,LASTONE,NEXC ON,RBGION: INTEGER;

* -..- END;
'Y2' 1APPOS = ARRAY (. .. MAXBIT .)OF POSITION;

* PFILE = TEXT;
BITSEIT = ARRAY (.1.J4AXBIT .)OF BOOLEAN;
BITRRAY = ARRAY (. 1. .MAXBIT .) OF BITSETI;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTEGERI;
PUELAG = (PACX,LiPACK);
SCHRES = (NOTDONE, INSERT,MA.TCe);
REGOOND = (INSIDE,OVERLAP,OUTSIDE, (NKNON);
MAPSTAT = (OKAY , ENDLEV,TERt4, EMP 1Y,ATTOP,ATBOT);
MAPOPER = (UP, DOWN,ACROSS,SM1P,C~lKPARE);
TRAVRES = (TOP ,LFAF, NEK1NDE,OLDNODE, NEXT);
REGDEF = RECORD

LOWVAL, HIGHVAL: DIVE2;
END;
=ED ARRAY (. ..MAXDI .) OF DIVBC;

C8ARAY =ARRAY L.1.8 .) OF CHAR;

PROCEDURE OEYIEITS (OFILE :PFILE; BIS: BITSE ; K: IWrEBER);
EXTERNAL;

(OUflPVfl K BITS FROM THE BITSET TO OFILE. *

PROCEDURE OUIVECZ(DATVB : DIVBC); EXTERNAL;
* . (* ~OUTP~LlS DAa"/BC 70 P.FfL~E~ IN HEK AND) IN'TEGR.~

223

FREE NODE MANIPUIATION ROUTINES

RCEDURE RETCELL(VAR NODE:NODEARRAY ;OD:INTEGER); EXTERNAL;
RE TRNS AN OLD NODE TO THE FREE STORAE LIST

AFTER" CHCKING ROR DETECTABLE ERRRS. "

BIT MANIPULATION UTILITIES.

PROCEDURE BITPU(VAR BITS:BITSE;VAR IN'IWD: IM3ER;DIR:PUFLAG);
EXTEIRNAL;
(1 KEYS ON DIR (PACK OR UNPACK) ITO

PACK BITS INTO INTWD, OR
UNPACK IN'IWD INTO BITS. *)

P0EDURE CRTLSK(VAR ISKVB2:DIVBC;DATVBC:DIVE];K:INTEGER);
EXTERNAL;

CRET(* AE THE LEVEL SEARH KEYS FROM TM DATA rM VECTO)R,
DA-VBC. TE ITH LEVEL SEARCH KEY C)NSISTS OF THE ITh MSB
OF EACH OF THE ELEMENTS OF DATVBC. THERE ARE K ELEMENTS
IN DATVEC, AND MXBIT ELEMENTS IN LSVEC. "

r

,"224

PRCEDURE ARSEEIBrT(REXFLD,RBr3IND: In rFER;VAiR QCtID:REXGflND);
(X ACTS THE 0tIITION OF THE REGION RLAGS FC1R 7HE

RBGIND REGION, USING THE REG3ION FLAGS IN REGFLD. RElURNS
THIE 00NITIONt OF MhE FLAGS IN COWN.
MhE REG3ION FLAGS ARE TW BITS, AND ARE ITPRhDAS

OO--UNOMN
O1--OUTSIDE
10--INSIDE
11--OVELAP

IF THE REGION INDEX IS IIILEXIA THN THE RETURN IS ALWAYS
"INSIDE". *

VAR BEX3ION :BITSET;
BTLJ: INTEX3ER;

BEGIN
IF (ROGIND<1) OR (RBGIND>DAXRBG) MhEN CND :=INSIDE
ELSE BEI3IN

BITPU(RY3ION,REX3FLD, UNPACK); (*GEr MME BITS. *
BIC:(RBXIND-1)*2+1; (*FIND THE FIELD WCATICN. *
IF (RBGION(.BITIJC.) AND REGION(. BITL+.)) THENJ

COND :=OEAP
ELEIF ROXIONC. BITWC.) MhEN ClND :=INSIDE
ELEIF REXON(C. BITWOC+1.) THEN~ (C)tI):=XTSIDE

KE;D

END; O*F ARSECT

225

PROEDURE AWOVE(VAR MAP :ADAI94AP ;VAR P06 :PPOS;
- ~~A LEM I . frB=E;DIR:NAPPR;VA S'EATW :PSTAT);

BY DIR. UPDATES TH3E POSITION ST~AK, AND) RF7ILRM
IHE STATUS VALUE ACCODING MK THE NODE TY'PE REACHED
AS FOLLOWS:

ATIOP -MOP OF MAP STRUTURE REACHED
ATBOT -- BlO4O REACHED, BUT NO TEMINAL
EMPTYi -NULL POINTER M1 lUER LEVIEL
ENDLEV -- END OF LEVEL REACHED

TERM BOT104D REACHED, TE1RMINAL NODE
OKAY -- ANY OTHER ONDITION. *

VAR NWO: fINEGER;
BEGIN
WITH POS(.LEVEL.) DO

BEGIN
CASE DIR OF

UP:BEXGIN
IF (LEVEL<=1) THEN STATUS :=A L'IP
ELSE IF (NE 1ONE-CURRENT) THEN~ STA!UE :=ATM1P
ELSE BEGIN

LWVEL :=LEVEL-1;
STAPLE :=OAY;

END;
* D~MN :EN

IF (MAP.NODE(.CURRENI.).CDPTRKO) THEN
.9) STA'1U :-T~M

ELSE IF (MAP.N)DB(aiumaN.) .a)PTRI=O) THEN
STATUE :=EMP1Y

ELSE IF (LEVEL)-MAP. DIRHT. NIPAEEV) TIHENt
STATUE :-ATBOT

ELS BEGIN
LEVEL :=LEVEL+1;
POS (-LEVEL.) PAREZ1P:=URREZNT;
NNE:4fAP.NDE(.CJRRENT.) .DP'IR;
POS(.LEVEL.) .CRRENT:NKMNE;
POS (.LEVEL.). NEX'IONE:=

MAP.NODE(.NENJNE.).SPP TR;
POS(.LEVEL.) LASTONE:=QmRENT;
END;

END;
ACROSS: BEGIN

IF (NEX7ONE<=O) THEN
STATUE :=ENDLEV

ELSE BEGIN
LASTONE:CURENT;
C[RRENT:INEXl0NE;

NEXNE:-MAP.NOE(.WRRENT.).SPPTR;
END;

ENND;

END; ('OF MOVE *

226

Al l '- ..

- -.-- .

PROCEDURE MAP 1RAV(VAR MAP :ADAW4AP ;VAR P05 :MAPPOS;
VAR LEVEL: IN T ;OPER:MAPOPER;VAR RESULT:TRAVRES;
VAR PRFILE:PWILE);

T AVERSES THE ADAK MAP ONE NODE ATP A TIM IN
THE DIRBCTIONS INDICATED BY (PER. KEEPS ACK OF THE
POSITION IN P06 AND LEVEL, AND RETURNS THE RESULTING NODE
TYPE AS EOLWWS:

TOP -- DONE, ER OR NOT
LFAF- REACHED A LEAF
|NE..)E-- NEW NODE- OLD LEVEL, OR

NEW NODE- NEW LEVEL
OLCNODE- OLD NODE- OLD LEVEL *)

TH(* IS ROUTINE IS A STATE MACHINE.
STATE INPUT NEXT STATE RESULT
UP ATIOP STOP TOP

IOTHERS STOP NENNODE
DOWN EMPTY STOP lOP

ATBOT SLOP lOP
TERM4 STOP LEAF
OTHERS STOP NEWNODE

ACROSS EXLEV UP --

OT"ERS SLOP NENNODE
STOP - - -

VAR CROP:MAPOPER;
STATUS :MAPSTAT;

BEGIN
CU-OP:=CPER;
WILE (CUBOP<SlOP) DO

BBGIN (* PERFIOM ONE OPERATION PER 1OP. *
CASE CUROP OF

DOWN:BEGIN
CUROP:=GTOP;
AOVE(AP, POS,EVEL, DOWN, STATUS);
IF (STATUS "PTY) THEN

SEBIN
WRITELN(PRFILE,' MAP EROR. MISSING '

'SUBTREE. ***I);
RESULT :-OP;

ELSE IF (STATU-ATBOT) THEN
BE)GIN
WRITEL(PRFILE,' MAP BR . MISSING

'LEAF. ***');
RESULT: -MOP;

ELSE IF (STATUB-1E1) THEN
RESULT: -LEAF

ELSE (* NE LEVEL. *)
RESULT:-EWNOMDE;

ACROSS: BBXIN

227

AMJVI(MP,PS,LEVEL,ACROS,SATUS);
IF (STATtS-=EmDLEv) '1m a)P :-up
ELSE BEG3IN

RESULT: 4NEWNDE;
END;

EMD;
UP: BEGIN

CLW:-=P;
MVE(MAPvPOSvLEVE[AUPFSDATW);

IF (STATUS=A '1P) 7MiE RESULT:-MIP

$k31TjLT--OLNj)

228;

PROGAM AD4rUflL;
(THIS PROGAM TESTS THE ADA PROCjEDUE

M.9X~WFS =50; (* 4ALL BUFFER FOR NOW. *
MAXDIK - 10; MAX~ NUME OF DIMENSIONS. *

MABT-16; (*INTEGER~ LOOM~ IN BITS. *
(* WXBIT SIIJUW ALWIAYS BE BIGGER THAN k4AXDIM. *

MAXCDI -100; MA iX DATA ITEMS IN A RETRIEVAL. *

TYPE NOEPELL = RECOD
SPPTR,CDPR: INTBGER;
DATA:ARRAY (. 1-.2 .) OF INTGE;

NDDEARRAY = ARRAY (. ..MAXNODES .)OF tW3EL;
MMPIRECT = IMCOD

NUMDIM4, UM,N~MWES, NLNLEV: INTkGMR;

ADAMMAP = RECORD,
DIRBCT :?APDIREL'T;
N1WE:NWEARRAY;

PFILE - ET
BITSET =ARRAY (. 1..MAXBIT .)OF DOOLFAN;
BITARRAY = ARRAY (. 1..MAXBIT .) OF BITSET;
DIE ARRAY (. 0..MAXBIT .) OF INTEE;
PUPLAG - (PACKAINPACK);
SCHRES = (ND'IDONE, INSERT',MATC2H);
REGEF - R90OD

SEQDS - ARRAY C.0.J4AXDI .) OF DIVER?;
C8XRA- ARRAY . .8 . OF CHAR;

VAR MAP:ADAMAP;
MASK:ARRAY (. 1..NAXBIT .)OF INT33EII;
PRFILE :WILE;
PRFLAG: (DISPLAY, PRINTER);
BITFLG,VCFlwG :BOLEAN; DEBU FLAGS.

PRO)CEDURE OUIEITS (OFILE : WFILE; BITS: BITSET; N~UR: INTEG~ER);
EXNAL;

(*THIS PROCEDUJRE Ot7TS7I NUM~ BITS 'TO OFILE. *

PF40CE 0C71V3 (DATVB :DIVEC) ;ECTENAL;
(* IJPflS DATVPJ2 TO PRPILE IN HEX AND) INTEGER. *

229

,. -. ,-. . , . . . ,. - -

". .*: (" FREE NODE MANIPULATION ROUTINES

PR"CEURE GEICELZLVAR NODE:NODEARRAY;VAR NEM: nT3E);
(* T THE INDEX OF THE NEXT FREE NODE AFTER
REMOVING IT FRO4 THE FREE LIST.

NEW=O ON RETURN
MEWN "OUT OF FREE STORAE.

BE)IN
NEW:=NODE(. 0 .).SPPIR; POINTE FIRST FREE CELL. "1
NODE(, 0 .).SPPItR:=NODE(. NEW .).SPPTR; (* NEXT CELL. "1
IF NE=NODE(. 0 .).CDPTRMEN

BBGIN B" EUFFER EMPTY. *)
NODE(. 0 .).CDPTR:=0;
WRITEN(' *** MAP FULL. ***');

END; (" OF GE'"ELL

230

PROCEDURE NEiUPFK(VAR NODE: NODEARRAY;M: INTEER);
(~INITIALIZES A DAT~A BUFE OF LENTH~ M IN THE N(OE

ARRAY INITO A FREE STORAGE LIST.
THIS SETS UP NODE() AS THE HEAD OF THE LIST

OF FREE NODES.
NODE(0).SPPTR-POINT TO NEXT FREE NODE.
NODE(O).CDPTR- POINTER TO LAST FREE NODE.
NODE().DATA(1)-NMIBER OF NODES.

VAR I,J: INTEG3E;

BEGIN
I:-0;
J:=l; J(*JALAYS LEADS I BY CNE. *)
WMLE (I<=M) AND (I<=H4XMNODES) DO

BEGIN (* LOOP THROUGH ALL NODES. *
WITH NODE(. I .) DO

BIN(* SET UP EACH NODE'S FIELDS. *)
SPPTR:-J; (* POINTS TO NEXT NODE. *)
CDPTR:0; (* NL CHILD PINT. *)
DATA(. 1 .):=O;(* FPTY KEY FIELD. *)
DATAC. 2 .):=0;(* NO REGIONS. *)

~END;
I=J(* ADNZJCE TO NEXT NODE. *)

'-' END;
I:-I-i; (*RETURN T10 IAST NODE. *
NODE(. 0 .).aDPTR:=I; 1" POINT To LAST NODE. "1
NODE(. 0 .).DATA(. 1 .):=I; (* NLMBER OF NODES. *)
NODE(. I .).SPPTR:=0; (* LAST NODE IN FREE LIST. *)
END; (* OF NM FF *)

231

,,. .-

POEDURE REICELL(VAR NODE:NODEARRAY;CED:INTGFM);
(. RETURNS AN OLD NODE TO THE FREE STORAGE LIST
AFTR CiBCKING FOR DETETABLE ERRORS. *

IF (O<CLD) AND (OLD<=NODE(. 0 .).DATA(. 1 .J) THEN
BEGIN 1" ASSUME OLD IS VALID. *)
WIi NODE(. OLD)DO

BEIGIN
SPPTR'=NODE(. 0 .).SPPTR; NEXT CELT"
C LPt:=; (* ZERO REST OF NODE. *)
DATA(. I .):=O;

DATA(. 2 .):=0;

WITH NODE(. 0 .) DO

SPPTR :=CD; (* INSERT AT HEAD OF LIST. *)
IF (CDPTR=O) THEN

CDPTR:=CED; 1" IAST CELL ON FREE LIST. *)
END;

END; OF RETCELL "1

'
.

232

.. . .'•

BIT MANIPULATION UTILITIES.

PROCEDURE BITPU(VAR BITS: BITSEr; VAR INLWD: INTEl3ER; DIR: PUElmAG);
(KEYS ON DIR (PACK OR UN1PACK) M1

PACK BITS INTO0 IN50, OR~
UNIPACK INTWD INTO0 BITS.*

VAR INDEX,REVIM), BrID: INTB3ER;

BOGIN
IF (DIREt7NPACK) THiEN

BEGIN
BI7MW:=INTWD;
BITS(. 1.):=(BIT1WD<O); (~SIGN BITr.
IF (BITS (.1.)) THiEN BI WD:=B WD+MAXINT+1;

US E JUST BMLJ>IrK1nXj ON ONE'S QC4PLEMENT
HCIHINE. THIS IS FOR TIWO' S C0MPLEMENT ONLY. *

EESE

BITWD:0O; (BUJL 1D WORD HERE. *
INDEK :-2;
WIHILE (INDEK<4MXBIT) DO

BEGIN CHECISK MhE BITS ONE AT A TIME. *
REVIND :4RXBIT-INDEx+1;
IF (DIR--UNIPACK) THEN1

BE)GIN *GET NEXT BIT SETINGR. *

IF (BITS(.INDEX.)) WhEN UNLIPACK THE BIT. *
Bl!WD:.=BITlWD-MASK(.REVIND.);

END
EiSE

IF (BITS(.INDE.)) THEN~(PACK ON THE BIT. *
BIIWD:=BIIWD+MASK(.REVIN.);

fINDEX : INDEX+1;

IF (DIR = PACK) THEN
BE)GIN (CHOECK THE SIGN BIT. *
IF (BITS(.1.)) THENI

BI!IWD:=BITWD-MINTfl-1; (*TWO'S COP94N MACHI1NE
INVERSE OF ABOVE ThANSFRMATION. *

INIWD:=B1rIWD;

END; (*CF BITPO *

233

PRCEDURE CRTLS((VAR LSKVBC2:DIV3E ;DAVB2 :DIVB ;K: INTEX);
(* mETHE LEVEL SEARCH KEYS FROCM TH!E DATA I~M VBr2 OR,

1DATVB2. THfE I H LEVEL SEARC2H KEY (X)NSIS1B OF THE ITH JMSB
OF EACH OF THE EEENTS OF DATVB. T 'HERE ARE K ELEMENTS
IN DA!IVEY, AND MAXBIT ENTS IN LSKVEY2.

VAR I#J,FLSEWD,REVIND:INTBGER*
* .*TBIT:BOLEAN;

* IWNC: BITSET;
IS9KT :BITARRAY;

BEG3IN
ELSSJD:=O;

WHiILE (I<=lMXBIT) DO
BEGIN (*NCE 'VECTOR. ELEMENT INTO CtNE ROW

IN THE BIT ARRAY. *
REV IND :4JXBIT-I+1;
IF (BITFLG) THEN WRITE (PRFILE,I1:3,')
IF (I<=K) TlHEN (*TRANSLATE A R1M.

BITPU[(LSKT(.REV IND.),DA 1VEC(. I .4) UNPAOO)
WASE S(* 5RO TO '1 O"S. *

BITPU(IST(.REVID.) ,FLSEWD,ENPACK);
IF (BITF.L) TIHEN OUIBITS (PRFILE,ILSKT(.REVIND.) ,AXBIT);
I :=I+1;

IF (BITFLG) THEN WIRITELN (PRFILE);

WHILE (I<=WbXBIT) DO
BEGIN (* TRANSPOSE THE BIT ARRAY. *
IF (BITFLG) THEN WRITE(PRFILE,I:3,' 1);
J :=I+1;
WHILE(J<MMIT) DO

BEGIN (*SWITC~H ELEMNT IN THE REST OF TE
RON AND CILUMN. *

BI L(SKT(. JI .):=OIT;E(I.,AO

END;

EN; C* F CRTLSK *

234

.:. (* MAP MANIPULATION UTILITIES.*)

PROCEDRE NODEINS(VAR MAP:ADAMMAP; NE0NE, PARENT, LASTONE,
NEX ONE:fl(IEGER);
(* INSERTS THE NODE AT NCNE BEWEEN LASTONE AND NEXTONE,
COMPENSATING IF EITHER IS A PARENT. *)

BEGIN
WITH MAP DO

BEGIN
IF (0NEN1NE) AND (NEIONE<=DIRECT.NRJMiODES) THEN

BEGIN (* N NE APPEARS GAL. *)
IF (LASTONE=PARENT) THEN

BEGIN (* INSERT BELOW PARENT. *)
IF (NODE(. PARENT .).ODPTR=O) THEN

NEXfONE:=-PARENT; (* NEW LEVEL. *)
NODE(. NENONE .).SPPTR:=NEX ONE;
NODE(. PARENT .).DPTR:=*NfE;
END

ELSE (* INSERT INTO LEVEL. *)
BEGIN
NODE(. LASLONE .).SPPTR:=NEkNNE;
NODE(. NEIKNE .) .SPPTR: =NEfNE;
END;

"'-'..END;

END; (* IGNORE BAD POINTERS. *
END; (* OF NODEINS *)

235

PROCEDURE MAPSRCH (VAR LSEARCH :SCHRES ;VAR PARN,LASTONE,
NEXONE,LEVEL:INTEER;VAR MAP :ADAMP;
VAR LSK:DIVEC);
(* SEARHES THIE MAP IN MAP FMR THE LEVEL SEARCH

KEYS IN IM(. LSEARCH RETURNS INSERT (R MATCH, AND THE
POSITION IS RETURNED IN LEVELj PARENT, LASM~NE, AN)
NEXTrJNE. *

VAR L:INTEGER;
BEG3IN
NEX'IONE:=1; (~S]ART ATf R~OT.
LEVEL :4;
PARENr :=1;
LAS TNE :=1;
WITH MAP DO

BEG3IN
L :=lIR32T.N!U4LEV;
LSEACH: UTH;
WHILE (LSFAREH<>INSERT) AND (LEVEL(L) DO

BEGI1N (*STAT A NEW LEVEL. *
PARENT: -bEC'INE;
LAS TJNE:4-NEXTONE;
NEflDNE:-NODE(. LASTONE .).C)PTR; (MOVE DOWN. *
LEVEL :=LEVEL+1;

WHILE (ISHARCH-NT(1IONE) DO
BEGIN CHECKB~ NEXT NO)DE ONJ LEVEL. *
IF (NEX ONE<=O) TH.1EN~

ISEARCH :=INSERT END OF) LEVEL, INSERT.*
EL'SE

BEG3IN (*DIT END, c2iax NODE. *
IF (IaK(.LEVEL.) >

NI)DE(.NEXTONE.).DATFA(. 1 .)) THlEN
BEGIN (* MO)VE ACRSS LEVEL. *
LASTONE :4WEX1ONE;

NEXNE:=tmNDE(.NEKIONE.) .SPPTR;
ENID

ELSE IF (ISK(.LEVEL.)
NOME. NEX 7IONE.).DRTA(. 1 J)) THEN
ISEAREH : MATCH (* GO) TO NEXT

LEVEL. *
ESLSE ARCH :=INSERT; (*INSERT IHERE. *
END;

END;
END;

END; OF MAPS1REH

BEG~fI(ADAMTEST *
(*$NJU.LJLBY*)

236

- -- -

APPENDIX E

TEST RUNS

237

Test Run List

HELP list of ADAZ4CONTROL operations 239

NEW -- test ACREATE 240

ADD - -test A.ADD 242

GET--testARETRIEVE 247

FIND -test AFI N249

2DEL -- test ADELETE 253

238

-7,............... ~

LDOS READYADAM

INPUT

OUTPUT =

PRFILE = :L

ADAM TEST ROUTINE.
ADD ------ ADD DATA TO THE MAP.
DEB ------ DEBUG THE STRUCTURE.

*-. DEL ------ DELETE ALL DATA POINTS WITHIN A
REGION.

FIND -- ----- FLAG THE NEEDED NODES TO DEFINE
A REGION

GET ------ RETRIEVE A REGION OF DATA POINTS
INTO A SEQUENTIAL DATA FORM.

HELP ------ PRINT OUT HELP TABLE.
NEW ------ CREATE A NEW MAP BUFFER.
STOP ------ STOP PROCESSING.

23

'2,9

. *o

| **

ADAM COMMAND- NEW
INPUT BUF SIZE >50
INPUT NUM DIM >3
INPUT NUM LEV >6
ADAM COMMAND- DEB
DEBUG COMMAND = HELP
BITS - - - - SWITCHES BIT OUTPUT FLAG.
DIR - - - - OUTPUT MAP DIRECTORY.
DISP - - - - SWITCHES OUTPUT TO DISPLAY.
DUMP - - - - PRINTS THE MAP.
HELP - - - - DISPLAYS THIS TABLE.
LIST ---- SWITCHES OUTPUT TO PRINTER.
PAGE - - - - OUTPUTS A PAGE ON PRINT FILE.
STOP - - - - EXIT DEBUG MODE.
VECS - - - - SWITCHES VECTOR OUTPUT FLAG.
DEBUG COMMAND = LIST
DEBUG COMMAND = DIR

MAP DIRECTORY.
SIZE = 50 NODES.

0 REGIONS
3 DIMENSIONS
6 LEVELS

DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE - 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P= 2 C/D= 50 DATA= 0032 0000
1 S/P= -1 C/D= 0 DATA= 0000 0000
2 S/P- 3 C/D= 0 DATA= 0000 0000
3 S/P- 4 C/D- 0 DATA= 0000 0000
4 S/P= 5 C/D- 0 DATA- 0000 0000
5 S/P= 6 C/D- 0 DATA- 0000 0000
6 S/P= 7 C/D= 0 DATA- 0000 0000

1 7 S/P= 8 C/D- 0 DATA- 0000 0000
.: 8 S/P= 9 C/D- 0 DATA- 0000 0000

9 S/P= 10 C/D= 0 DATA- 0000 0000
10 S/P= 11 C/D- 0 DATA- 0000 0000
11 S/P= 12 C/D- 0 DATA- 0000 0000
12 S/P= 13 C/D- 0 DATA- 0000 0000
13 S/P- 14 C/D- 0 DATA- 0000 0000
14 S/P- 15 C/D= 0 DATA- 0000 0000
15 S/P= 16 C/D- 0 DATA- 0000 0000
16 S/P- 17 C/D- 0 DATA- 0000 0000
17 S/P- 18 C/D- 0 DATA- 0000 0000
18 S/P- 19 C/D- 0 DATA- 0000 0000
19 S/P- 20 C/D- 0 DATA- 0000 0000
20 S/P- 21 C/D- 0 DATA- 0000 0000
21 S/P- 22 C/D- 0 DATA- 0000 0000
22 S/P- 23 C/D- 0 DATA- 0000 0000
23 S/P- 24 C/D- 0 DATA- 0000 0030
24 S/P- 25 C/D- 0 DATA- 0000 0000
25 S/P- 26 C/D- 0 DATA- 0000 0000

240

26 S/P= 27 C/D= 0 DATA= 0000 0000
27 S/P= 28 C/D- 0 DATA= 0000 0000
28 S/P= 29 C/D= 0 DATA= 0000 0000
29 S/P- 30 C/D= 0 DATA- 0000 0000

* - 30 S/P- 31 C/D= 0 DATA= 0000 0000
.c. 31 S/P= 32 C/D- 0 DATA= 0000 0000

32 S/P= 33 C/D= 0 DATA= 0000 0000
* '"33 S/P= 34 C/D= 0 DATA= 0000 0000

34 S/P= 35 C/D= 0 DATA= 0000 0000
35 S/P= 36 C/D= 0 DATA= 0000 0000
36 S/P= 37 C/D= 0 DATA= 0000 0000
37 S/P= 38 C/D= 0 DATA= 0000 0000
38 S/P= 39 C/D= 0 DATA= 0000 0000
39 S/P= 40 C/D= 0 DATA= 0000 0000
40 S/P= 41 C/D= 0 DATA= 0000 0000
41 S/P= 42 C/D= 0 DATA= 0000 0000
42 S/P= 43 C/D= 0 DATA= 0000 0000
43 S/P= 44 C/D= 0 DATA= 0000 0000
44 S/P- 45 C/D= 0 DATA= 0000 0000
45 S/P= 46 C/D = 0 DATA= 0000 0000
46 S/P= 47 C/D= 0 DATA= 0000 0000
47 S/P- 48 C/D= 0 DATA= 0000 0000
48 S/P= 49 C/D= 0 DATA= 0000 0000
49 S/P- 50 C/D= 0 DATA= 0000 0000
50 S/P= 0 C/D= 0 DATA= 0000 0000

DEBUG COMAND STOP
STOPPING
END OF DEBUG.

241

ADAM COMM4AND- ADD
* - VECTOR INPUT FOR DATA PT

INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = .35
X(2) = .45
X(3) = .45

INPUT PT INDEX >1
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = .55
X(2) = .35
X(3) = .45

INPUT PT INDEX >2
ADAM COMMAND= DEB
DEBUG COMMAND - PAGE
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P= 12 C/D= 50 DATA= 0032 0000
1 S/P= -1 C/D= 2 DATA= 0000 0000
2 S/P= 7 C/D= 3 DATA- 0000 0000
3 S/P= -2 C/D= 4 DATA- 0007 0000
4 S/P= -3 C/D= 5 DATA= 0006 0000
5 S/P= -4 C/D= 6 DATA= 0007 0000
6 S/P= -5 C/D= -1 DATA= 0001 0000
7 S/P= -1 C/D= 8 DATA- 0001 0000
8 S/P= -7 C/D= 9 DATA= 0006 0000
9 S/P= -8 C/D= 10 DATA- 0004 0000

10 S/P= -9 C/D= 11 DATA- 0006 0000
11 S/p= -10 C/D= -2 DATA- 0003 0000
12 S/P- 13 C/D= 0 DATA= 0000 0000
13 S/P= 14 C/D- 0 DATA- 0000 0000
14 S/P= 15 C/D= 0 DATA- 0000 0000
15 S/P= 16 C/D= 0 DATA- 0000 0000
16 S/P= 17 C/D= 0 DATA- 0000 0000
17 S/P 18 C/D= 0 DATA- 0000 0000
18 S/P- 19 C/D- 0 DATA- 0000 0000
19 S/P= 20 C/D= 0 DATA- 0000 0000
20 S/P- 21 C/D= 0 DATA= 0000 0000
21 S/P- 22 C/D= 0 DATA- 0000 0000
22 S/P- 23 C/D = 0 DATA- 0000 0000
23 S/P- 24 C/D- 0 DATA- 0000 0000

" 24 S/P- 25 C/D- 0 DATA- 0000 0000
25 S/Pm 26 C/D = 0 DATA- 0000 0000

242

26 s/P= 27 C/D- 0 DATA= 0000 0000
27 S/P= 28 C/D= 0 DATA= 0000 0000
28 S/P= 29 C/D= 0 DATA= 0000 0000
29 S/P= 30 C/D= 0 DATA= 0000 0000
29 S/P= 30 C/D= 0 DATA- 0000 0000
30 S/P= 31 C/D= 0 DATA= 0000 0000
31 S/P= 32 C/D- 0 DATA= 0000 0000
32 S/P= 33 C/D- 0 DATA= 0000 0000
33 S/P- 34 C/D= 0 DATA= 0000 0000
34 S/p= 35 C/D= 0 DATA= 0000 0000
35 S/P= 36 C/D= 0 DATA= 0000 0000
36 S/P= 37 C/D= 0 DATA= 0000 0000
37 S/P= 38 C/D= 0 DATA= 0000 0000
38 S/p= 39 C/D= 0 DATA= 0000 0000
39 S/p= 40 C/D= 0 DATA= 0000 0000
40 S/P= 41 C/D= 0 DATA= 0000 0000
41 S/P= 42 C/D= 0 DATA= 0000 0000
42 S/P= 43 C/D= 0 DATA= 0000 0000
43 S/P= 44 C/D= 0 DATA= 0000 0000
44 S/P= 45 C/D= 0 DATA= 0000 0000
45 S/P= 46 C/D= 0 DATA= 0000 0000
46 S/p= 47 C/D= 0 DATA= 0000 0000
47 S/P= 48 C/D= 0 DATA= 0000 0000
48 S/P= 49 C/D= 0 DATA= 0000 0000
49 S/P- 50 CID- 0 DATA= 0000 0000
50 S/P= 0 C/D= 0 DATA= 0000 0000

0 DEBUG COMMAND - STOP
STOPPING
END OF DEBUG.

ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = .45
X(2) = .35
X(3) = .35

INPUT PT INDEX >3
ADAM COMMAND- ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) - .55
X(2) = .45
X(3) - .35

INPUT PT INDEX >4
ADAM COMMAND- ADD
VECTOR INPUT FOR DATA PT

SINPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
" USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE

243

N -

.. . . .

0<- XCI) <1
XC 1) = .45
X(2) - .25
X(3) - .25

INPUT PT INDEX >5
ADAM COMMAND- ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= XCI) <1

XC 1) m .35
X(2) = .55
X(3) = .15

INPUT PT INDEX >6
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= XCI) <1

XC 1) =0

X(2) =0
X(3) = 0

INPUT PT INDEX >7
ADAM COMMAND= ADDe VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= XCI) <1

XC 1) =.1

XC 2) =.1

XC 3) =.1

INPUT PT INDEX >8
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT

INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= XCI) <1

XC 1) -. 9
XC 2) =.9

XC 3) =.9

INPUT PT INDEX >9
* ADAM COMMAND- ADD

VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<in XCI) <1

XC1) -0
XC 2) -. 5
XC 3) .9

244

INPUT PT INDEX >10
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
o<= X(I) <1

X(1) = .9
X(2) =0
X(3) = .5

INPUT PT INDEX >11
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = .5
X(2) = .5
X(3) = .5

INPUT PT INDEX >12
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE

0<= X(I) <1.
X(1) = .75
X(2) = .25
X(3) = .5

INPUT PT INDEX >13
MAP FULL.
MAP FULL.

ADAM COMMAND= DEB
DEBUG COMMAND = PAGE
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P= 50 C/D= 50 DATA= 0032 0000
1 S/P= -1 C/D= 2 DATA= 0000 0000
2 S/P= 7 C/D= 25 DATA= 0000 0000
3 S/P= -2 C/D= 12 DATA= 0007 0000

- 4 S/P= -3 C/D= 5 DATA= 0006 0000
5 S/P= -4 C/D= 6 DATA= 0007 0000
6 S/P= -5 C/D= -1 DATA= 0001 0000
7 S/P= 20 C/D = 8 DATA= 0001 0000
8 S/P= -7 C/D= 15 DATA= 0006 0000
9 S/P= -8 C/D= 10 DATA= 0004 0000

10 S/P= -9 C/D= 11 DATA= 0006 0000
11 S/P= -10 C/D= -2 DATA- 0003 0000
12 S/P- 4 C/D= 18 DATA- 0001 0000

245

. 13 S/P= -12 C/D= 14 DATA= 0007 0000
14 S/P= -13 C/D= -3 DATA= 0006 0000
15 S/P= 9 C/D= 16 DATA= 0002 0000
16 S/P= -15 C/D= 17 DATA= 0006 0000
17 S/P= -16 C/D= -4 DATA= 0005 0000
18 S/P= 13 C/D= 19 DATA= 0001 0000
19 S/P= -18 C/D= -5 DATA= 0000 0000
20 S/P= 41 C/D= 21 DATA= 0002 0000
21 S/P= -20 C/D= 22 DATA= 0001 0000
22 S/P= -21 C/D= 23 DATA= 0004 0000
23 S/P= -22 C/D= 24 DATA= 0001 0000
24 S/P= -23 C/D= -6 DATA= 0003 0000
25 S/P= 3 C/D= 26 DATA= 0000 0000
26 S/P= -25 C/D= 27 DATA= 0000 0000
27 S/P= 29 C/D= 28 DATA= 0000 0000
28 S/P= -27 C/D= -7 DATA= 0000 0000
29 S/P= -26 C/D= 30 DATA= 0007 0000
30 S/P= -29 C/D= -8 DATA= 0007 0000
31 S/P= -1 C/D= 46 DATA= 0007 0000
32 S/P= -31 C/D= 33 DATA= 0007 0000
33 S/P= -32 C/D= 34 DATA= 0007 0000
34 S/P= -33 C/D= 35 DATA= 0000 0000
35 S/P= -34 C/D= -9 DATA= 0000 0000
36 S/P= 31 C/D= 37 DATA= 0006 0000
37 S/P= -36 C/D= 38 DATA= 0004 0000
38 S/P= -37 C/D= 39 DATA= 0004 0000
39 S/P= -38 C/D= 40 DATA= 0000 0000
40 S/P= -39 C/D= -10 DATA= 0000 0000
41 S/P= 36 C/D= 42 DATA= 0005 0000
42 S/P- -41 C/D= 43 DATA= 0001 0000
43 S/P= -42 C/D= 44 DATA= 0001 0000
44 S/P -43 c/D 45 DATA- 0000 0000
45 S/P= -44 C/D= -11 DATA= 0000 0000
46 S/P- 32 C/D= 47 DATA= 0000 0000
47 S/P= -46 C/D- 48 DATA- 0000 0000
48 S/P- -47 C/D- 49 DATA- 0000 0000
49 S/P- -48 C/D= -12 DATA- 0000 0000
50 S/P= 0 C/D= 0 DATA= 0000 0000

DEBUG COMMAND - STOP
STOPPING
END OF DEBUG.

246
.. ... :* .. ,

~7. ADAK COt4!AND= GET
INPUT REG IND >0
RETRIEVED DATA POINTS.

7 .00000 .00000 .00000
8 .09375 .09375 .09375
5 .43750 .25000 .25000
3 .43750 .34375 .34375
1 .34375 .43750 .43750
4 .53125 .43750 .34375
2 .53125 .34375 .43750
6 .34375 .53125 .12500

*11 .87500 .00000 .50000
10 .00000 .50000 .87500
12 .50000 .50000 .50000
9 .87500 .87500 .87500

247

ADAM COMMAND= FIND
INPUT REG IND >1
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = .3
X(2) = .2
X(3) = .1

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
o<= X(I) <1

X(1) .5
X(2) = .6
X(3) = .5

ADAM COMMAND= GET
INPUT REG IND >1
RETRIEVED DATA POINTS.

5 .43750 .25000 .25000
3 .43750 .34375 .34375
1 .34375 .43750 .43750
6 .34375 .53125 .12500

12 .50000 .50000 .50000

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE = 0
INDEX OF LAST NODE 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P- 50 C/D= 50 DATA= 0032 0000
1 SIP- -1 C/D= 2 DATA= 0000 COOO
2 S/P" 7 C/D= 25 DATA= 0000 C000
3 S/P- -2 C/D= 12 DATA= 0007 COoo
4 S/P= -3 C/D- 5 DATA= 0006 COOO
5 S/P- -4 C/D= 6 DATA- 0007 8000
6 S/P= -5 C/D= -1 DATA- 0001 0000
7 S/P- 20 C/D= 8 DATA- 0001 COOO
8 S/P= -7 C/D= 15 DATA- 0006 COOO
9 S/P- -8 C/D- 10 DATA- 0004 C000

10 S/P- -9 C/D- 11 DATA- 0006 COOO
11 S/P- -10 C/D- -2 DATA- 0003 4000
12 S/P- 4 C/D- 18 DATA- 0001 8000
13 S/P- -12 C/D- 14 DATA- 0007 0000

1 14 S/P- -13 C/D- -3 DATA- 0006 0000
15 SIP- 9 C/D- 16 DATA- 0002 CO0

% 16 S/P- -15 c/D- 17 DATA- 0006 Cooo
17 S/P- -16 C/D- -4 DATA- 0005 4000
18 S/P- 13 C/D- 19 DATA- 0001 0000

248

- --t.-

19 S/P= -18 C/D= -5 DATA= 0000 0000
20 S/P= 41 C/D= 21 DATA= 0002 COOO
21 S/P= -20 C/D= 22 DATA= 0001 COOO
22 S/P= -21 C/D= 23 DATA= 0004 COOO
23 S/P= -22 C/D= 24 DATA= 0001 8000

24 S/P= -23 C/D= -6 DATA= 0003 0000
25 S/P= 3 C/D= 26 DATA= 0000 4000
26 S/P= -25 C/D= 27 DATA= 0000 0000
27 S/P= 29 C/D= 28 DATA= 0000 0000
28 S/P= -27 C/D= -7 DATA= 0000 0000
29 S/P= -26 C/D= 30 DATA= 0007 0000
30 S/P= -29 C/D= -8 DATA= 0007 0000
31 S/P= -1 C/D= 46 DATA= 0007 COOO
32 S/P= -31 C/D= 33 DATA= 0007 4000
33 S/P= -32 C/D= 34 DATA= 0007 0000
34 S/P= -33 C/D= 35 DATA= 0000 0000
35 S/P= -34 C/D= -9 DATA= 0000 0000
36 S/P= 31 C/D= 37 DATA= 0006 COOO
37 S/P= -36 C/D= 38 DATA= 0004 4000
38 S/P= -37 C/D= 39 DATA= 0004 0000
39 S/P= -38 C/D= 40 DATA= 0000 0000
40 S/P= -39 C/D= -10 DATA= 0000 0000
41 S/P= 36 C/D= 42 DATA= 0005 COOO
42 S/P= -41 C/D= 43 DATA= 0001 4000
43 S/P= -42 C/D= 44 DATA= 0001 0000
44 S/P= -43 C/D= 45 DATA= 0000 0000
45 S/P= -44 C/D= -11 DATA= 0000 0000
46 S/P= 32 C/D= 47 DATA= 0000 COOO
47 S/P= -46 C/D= 48 DATA= 0000 COOO
48 S/P= -47 C/D= 49 DATA- 0000 COOO
49 S/P= -48 C/D- -12 DATA= 0000 COOO
50 S/P= 0 C/D= 0 DATA- 0000 0000

DEBUG COMMAND = STOP
STOPPING
END OF DEBUG.

ADAM COMMAND= FIND
INPUT REG IND >2
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<- X(I) <1

X(1) = .5
X(2) = .3
X(3) - .3

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<- X(I) <1

X(1) - .6
X(2) - .5
X(3) - .5

249

ADAM COMMAND= GET
INPUT REG IND >2
RETRIEVED DATA POINTS.

4 .53125 .43750 .34375
2 .53125 .34375 .43750

12 .50000 .50000 .50000

ADAM4 COMMAND- FIND
INPUT REG IND >3
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<- XCI) <1

X(1) =.3

X(2) =.2
X(3) =.1

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<- XCI) <1

X(1) =.5

X(2) =.6
X(3) =.5

ADAM COMMAND- GET9) INPUT REG IND >3
RETRIEVED DATA POINTS.

5 .43750 .25000 .25000
3 .43750 .34375 .34375
1 .34375 .43750 .43750
6 .34375 .53125 .12500

12 .50000 .50000 .50000

ADAM COMMAND= FIND
INPUT REG IND >3
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
* - 0<- XCI) <1

X(1) .4
X(2) =.3
X(3) -. 3

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<- XCI) <1

XC 1) -. 6
X(2) -. 5

i.'.-.XC 3) -. 5
ADAM COMMAND- GET
INPUT REG IND >3

250

. -RETRIEVED DATA POINTS.
3 .43750 .34375 .34375
1 .34375 .43750 .43750
4 .53125 .43750 .34375
2 .53125 .34375 .43750
6 .34375 .53125 .12500

12 .50000 .50000 .50000

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P= 50 C/D- 50 DATA= 0032 0000
1 S/P- -1 C/D= 2 DATA= 0000 FCOO
2 S/P= 7 C/D= 25 DATA= 0000 DCOO
3 S/P- -2 C/D= 12 DATA= 0007 CCOO
4 S/P= -3 C/D= 5 DATA= 0006 CCOO
5 S/P- -4 C/D= 6 DATA= 0007 8800
6 S/P= -5 C/D- -1 DATA= 0001 0000
7 S/P- 20 C/D= 8 DATA= 0001 FCOO
8 S/P- -7 C/D= 15 DATA= 0006 FCOO
9 S/P- -8 C/D= 10 DATA= 0004 FCOO

S0 s/P- -9 C/D= 11 DATA= 0006 E800
11 S/P= -10 C/D- -2 DATA= 0003 4400
12 S/P- 4 C/D= 18 DATA= 0001 8C00
13 S/P- -12 C/D= 14 DATA= 0007 0800
14 S/P- -13 C/D= -3 DATA- 0006 0000
15 S/P- 9 C/D= 16 DATA= 0002 FCOO
16 S/P- -15 C/D= 17 DATA= 0006 E800
17 S/P- -16 C/D= -4 DATA= 0005 4400
18 S/P- 13 C/D= 19 DATA= 0001 OCOO
19 S/P- -18 C/D= -5 DATA= 0000 0400
20 S/P= 41 C/D= 21 DATA- 0002 DCOO
21 S/P- -20 C/D= 22 DATA= 0001 CCOO
22 S/P- -21 C/D- 23 DATA- 0004 CCOO
23 S/P- -22 C/D= 24 DATA- 0001 8800
24 S/P= -23 C/D= -6 DATA= 0003 0000
25 S/P- 3 C/D- 26 DATA- 0000 4400
26 S/P- -25 C/D= 27 DATA- 0000 0000
27 S/P- 29 C/D- 28 DATA- 0000 0000
28 S/P= -27 C/D- -7 DATA= 0000 0000
29 S/P- -26 C/D= 30 DATA- 0007 0000
30 S/P- -29 C/D- -8 DATA- 0007 0000
31 S/P- -1 C/D- 46 DATA- 0007 FCOO
32 S/P- -31 C/D- 33 DATA- 0007 5400
33 S/P- -32 C/D- 34 DATA- 0007 0000
34 S/P- -33 C/D- 35 DATA- 0000 0000
35 S/P- -34 C/D- -9 DATA- 0000 0000
36 S/P- 31 C/D- 37 DATA- 0006 DCOO
37 S/P- -36 C/D= 38 DATA- 0004 4400
38 S/P- -37 C/D- 39 DATA- 0004 0000

251

- ... 39 SIP- -38 C/D- 40 DATA= 0000 0000
S.>40 S/P- -39 CID= -10 DATA= 0000 0000

41 S/P= 36 C/D= 42 DATA- 0005 FCOO
42 S/P- -41 C/D- 43 DATA= 000]. 5400
43 S/P= -42 C/D= 44 DATA= 0001 0000
44 S/P= -43 C/D- 45 DATA= 0000 0000
45 S/P- -44 C/D= -11 DATA= 0000 0000
46 S/P- 32 C/D= 47 DATA= 0000 FCOO
47 S/P- -46 C/D= 48 DATA- 0000 FCOO
48 S/P- -47 C/D= 49 DATA= 0000 FCOO
49 S/P- -48 C/D- -12 DATA- 0000 FCOO
50 S/P- 0 C/D- 0 DATA- 0000 0000

-. DEBUG COMMAND -STOP
STOPPING
STOPPING

-* END OF DEBUG.

252

ADAM COMMAND= DELETE
ADAM COMMAND- DEL
INPUT REG IND >2
ADAM COMMAND= FIND
INPUT REG IND >3
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE
0<= X(I) <1

X(1) = -1
ADAM COMMAND= GET
INPUT REG IND >3
RETRIEVED DATA POINTS.

3 .46677 .37302 .35934
1 .37302 .46677 .45309
6 .37302 .56052 .14059

ADAM COMMAND- GET 0
INPUT REG IND >0
RETRIEVED DATA POINTS.

7 .02927 .02927 .01559
8 .12302 .12302 .10934
5 .46677 .27927 .26559
3 .46677 .37302 .35934
1 .37302 .46677 .45309
6 .37302 .56052 .14059

11 .90427 .02927 .51559
10 .02927 .52927 .89059
9 .90427 .90427 .89059

ADAM COMMAND- DEB
DEBUG COMMAND - DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE - 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50

0 S/P- 46 C/D- 50 DATA- 0032 0000
1 S/P- -1 C/D- 2 DATA- 0000 FCOO
2 S/P- 20 C/D- 25 DATA- 0000 DCOO
3 S/P- -2 C/D- 12 DATA- 0007 CCOO
4 S/P- -3 C/D- 5 DATA- 0006 CCOO
5 S/P- -4 C/D- 6 DATA- 0007 8800
6 S/P- -5 C/D- -1 DATA- 0001 0000
7 s/P- 8 C/D- 0 DATA- 0000 0000
8 S/P- 9 C/D- 0 DATA- 0000 0000
9 S/P- 10 C/D- 0 DATA- 0000 0000

10 S/P- 11 C/D- 0 DATA- 0000 0000
11 S/P- 15 C/D- 0 DATA- 0000 0000
12 S/P- 4 C/D- 18 DATA- 0001 8C00
13 S/P- -12 C/D- 14 DATA- 0007 0800
14 S/P- -13 C/D- -3 DATA- 0006 0000
15 S/P- 16 C/D 0 DATA- 0000 0000

253

*.

16 S/P- 17 C/D= 0 DATA- 0000 0000
17 S/P- 50 C/D= 0 DATA- 0000 0000
18 S/P= 13 C/D= 19 DATA- 0001 0C00
19 S/P= -18 C/D- -5 DATA= 0000 0400
20 S/P- 41 C/D= 21 DATA- 0002 DCOO
21 S/P= -20 C/D= 22 DATA- 0001 CCOO
22 S/P= -21 C/D= 23 DATA= 0004 CCOO
23 S/P= -22 C/D- 24 DATA- 0001 8800
24 S/Pm -23 C/D= -6 DATA- 0003 0000
25 S/P= 3 C/D= 26 DATA= 0000 4400
26 S/P= -25 C/D= 27 DATA= 0000 0000
27 S/P= 29 C/D= 28 DATA- 0000 0000
28 S/P= -27 C/D- -7 DATA- 0000 0000
29 S/P= -26 C/D= 30 DATA- 0007 0000
30 S/P- -29 C/D= -8 DATA= 0007 0000
31 S/P= -1 C/D- 32 DATA- 0007 FCOO
32 S/P- -31 C/D= 33 DATA= 0007 5400
33 S/P= -32 C/D- 34 DATA- 0007 0000
34 S/P= -33 C/D= 35 DATA= 0000 0000
35 S/P= -34 C/D- -9 DATA- 0000 0000
36 S/P= 31 C/D= 37 DATA= 0006 DCOO
37 S/P= -36 C/D= 38 DATA= 0004 4400
38 S/P= -37 C/D- 39 DATA= 0004 0000
39 S/P= -38 C/D- 40 DATA= 0000 0000
40 S/P= -39 C/D= -10 DATA- 0000 0000
41 S/P= 36 C/D= 42 DATA- 0005 FCOO
42 S/P- -41 C/D= 43 DATA- 0001 5400
43 S/P= -42 C/D- 44 DATA- 0001 Go000

* 44 S/P- -43 C/D= 45 DATA- 0000 0000
45 S/P= -44 C/D- -11 DATA- 0000 0000
46 S/P= 47 C/D 0 DATA- 0000 0000
47 S/P- 48 C/D- 0 DATA- 0000 0000
48 S/P- 49 C/D 0 DATA- 0000 0000
49 S/P- 7 C/D- 0 DATA- 0000 0000
50 S/P= 0 C/D= 0 DATA- 0000 0000

DEBUG COMMAND - STOP
STOPPING
END OF DEBUG.

ADAM COMMAND- DEL
INPUT REG IND >3
ADAM COMMAND- GET
INPUT REG IND >1
RETRIEVED DATA POINTS.

5 .46091 .27927 .26559

ADAM COMMAND- GET
INPUT REG IND >2
NO DATA POINTS IN THE REGION.
ADAM COMMAND- GET
INPUT REG IND >3
NO DATA POINTS IN THE REGION.
ADAM COMMAND- GET
INPUT REG IND >0

254

RETRIEVED DATA POINTS.
7 .02341 .02927 .01559
8 .11716 .12302 .10934
5 .46091 .27927 .26559

11 .89841 .02927 .51559
10 .02341 .52927 .89059
9 .89841 .90427 .89059

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50

DUMP OF ADAM MAP.
FROM 0 TO 50
0 S/P= 20 C/D= 50 DATA- 0032 0000
1 S/P= -1 C/D= 2 DATA- 0000 FCOO
2 S/P= 41 C/D= 25 DATA- 0000 DCOO
3 S/P= -2 C/D= 12 DATA- 0007 CCOO
4 S/P- 5 C/D- 0 DATA- 0000 0000
5 S/P= 6 C/D= 0 DATA- 0000 0000
6 S/P= 13 C/D- 0 DATA- 0000 0000
7 S/P= 8 C/D= 0 DATA- 0000 0000
8 S/P= 9 C/D= 0 DATA= 0000 0000
9 S/P= 10 C/D- 0 DATA- 0000 0000

10 S/P- 11 C/D= 0 DATA- 0000 0000
11 S/P= 15 C/D- 0 DATA- 0000 0000
12 S/P- -3 C/D- 18 DATA- 0001 8C00
13 S/P= 14 C/D- 0 DATA- 0000 0000
14 S/P- 46 C/D- 0 DATA- 0000 0000
15 S/P- 16 C/D- 0 DATA- 0000 0000
16 S/P= 17 C/D- 0 DATA- 0000 0000
17 S/P- 50 C/D- 0 DATA- 0000 0000
18 S/P= -12 C/D- 19 DATA- 0001 OCOO
19 S/P- -18 C/D- -5 DATA- 0000 0400
20 S/P- 21 C/D- 0 DATA- 0000 0000
21 S/P- 22 C/D- 0 DATA- 0000 0000
22 S/P- 23 C/D- 0 DATA- 0000 0000
23 S/P- 24 C/D- 0 DATA- 0000 0000
24 S/P- 4 C/D- 0 DATA- 0000 0000
25 S/P- 3 C/D- 26 DATA- 0000 4400
26 S/P= -25 C/D- 27 DATA- 0000 0000
27 S/P- 29 C/D- 28 DATA- 0000 0000
28 S/P- -27 C/D- -7 DATA- 0000 0000
29 S/P- -26 C/D- 30 DATA- 0007 0000
30 S/P- -29 C/D- -8 DATA- 0007 0000
31 S/P- -1 C/D- 32 DATA- 0007 FCOO
32 S/P- -31 C/D- 33 DATA- 0007 5400
33 S/P- -32 C/D- 34 DATA- 0007 0000
34 S/P- -33 C/D- 35 DATA- 0000 0000
35 S/P- -34 C/D- -9 DATA- 0000 0000
36 S/P- 31 C/D- 37 DATA- 0006 DCOO
37 S/P- -36 C/D- 38 DATA- 0004 4400
38 S/P- -37 C/D- 39 DATA- 0004 0000

255

r .!

,: ,'.. 39 S/P- -38 C/D= 40 DATA- 0000 0000
'" 40 S/P- -39 C/D- -10 DATA- 0000 0000

41 S/P= 36 C/D- 42 DATA= 0005 FCOO
42 S/P- -41 C/D= 43 DATA- 0001 5400
43 S/P- -42 C/D- 44 DATA- 0001 0000
44 S/P- -43 C/D= 45 DATA- 0000 0000
45 S/P- -44 C/D= -11 DATA- 0000 0000
46 S/P- 47 C/D= 0 DATA- 0000 0000
47 S/P- 48 C/D- 0 DATA= 0000 0000
48 S/P- 49 C/D- 0 DATA- 0000 0000
49 S/P- 7 C/D= 0 DATA= 0000 0000
50 S/P- 0 C/D- 0 DATA= 0000 0000

DEBUG COMMAND - STOP
STOPPING
END OF DEBUG.

ADAM COMMAND- STOP[-: STiP REQUESTED.
END OF ADAM TEST.

PROGRAM TERMINATED AT #8333
STACK USED - 4653 OF 8128 HEAP USED - 882 OF 12302
LDOS READY
RESET *DO

.

~256

.. - " -U.-' " - " --- ' , .d .- , ." --

Vita

James R. Holten III was born on 18 April, 1949 in Paso

Robles, California, to Mr. and Mrs. James R. Holten jr. He

graduated from Illinois Valley High School, Cave Junction,

Oregon, in 1967. In 1973 he graduated from Oregon State

University with a Bachelor of Science in Mathematics and a

Bachelor of Science in Computer Science. After graduation

he enlisted in the Air Force, and in 1975 was admitted into

Officer Training School. After commissioning on 16 July,

1975, he spent six years as a Missle Warning Programming

Officer on phased array warning sites at Eglin Air Force

Base, Florida; Otis Air Force Base, Massachusetts; and Beale

qy Air Force Base, California. During this time he maintained

computer programs for communications, radar function

control, real time operating systems, and automated fault

detection and isolation. He is married to the former

Raymona A. Clinkingbeard of Ft. Walton Beach, Florida, and

they have six children, Erin, Donald, James, Aghavni,

Arlene, and Roger.

Permanent Address: 5839 Westside Rd.

Cave Junction, Oregon 97523

257

SECURITY CLASSI FICATION OF THIS 0 40E (W7... flata Entered) __________________

REPORT DOCUMENTATION PAGE BFRE COSTRUTINS OR

1. REPORT NUMBER 12.GOVT ACCFSSION NO. 3. PECIPOFPJT'S CATALOG NUMBER

AFIT/GCS/EE/82D..19 24". 7/______

4. TITLE (and Subtitle) 5. TF E OF REPOR'T &PERIOD COVERED

ASSOCIATIVE DATA ACCESS METHOD MS Thesis

(ADAM) 6. PERFORMING ORG. REPORT NUMBER

7AUTHOR(a) 8. CONI RACT OR GRANT NUMBER(&)

James R. Holten III -
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PPOGPiAM ELEMENT, PROJECT, TASK

APEA A WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT-ENI
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December, 1982
13. NumBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(if different fromi Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different fraum Report)

IS. SUPPLEMENTARY NOTES atrve TwJ~ese 1AW WU I17.

WOLA VER

Daln lot Research and Profesitonal DyeO peal~k*

ci1 Uehnkg C TC32 9 JA N '
19. KEY WORDS (Continue on reverse aide if necesawy and identify by block number)

Associative Data Access
* Computer Data Structures

Data Base Access
* Associative Memory

20. ABTAT(otneo ees aide If necessary and identify by block number)prbe I
A otaesolution to the multikey acespolmis presented

The result, ADAM, models associative memory techniques to obtain
fast retrieval times and efficient data storage. A multidimensiona
tree structure is used. Each data item key is one dimension,
and at each lower level in the tree each cimension is divided(into successively smaller half-intervals. Unlike in-way trees
with fixed sized nodes and K-D tree levels each ADAM ma 1~e is
-a linear linked list. Each node of the A AM level linear isv

FOAR IN FINV5 SOSLT Unclassif iedDD ORMA7 1473 EDITOOFINV5ISBOLE
SECURITY CLASSIFICATION Of THIS PAGE (When Data Entered)

.2

- Unclassified
"-" SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

" the root of a subtree, or is the terminal node of a data item in
the data set. The resulting data structure is, in many cases,
more storage efficient than normal linear storage of the data items.

* This is due to the suppression of duplicate high order bits among
the data items. The method allows retrieval of associative data

• subsets from the associative data set much faster than other multik y
access techniques. Analysis of variations on ADAM are suggested,
especially for application to very large (over 100000 data items

*" per data set) multiuser databases.

u Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. V

I-

